
PrideMM: Second Order Model Checking for
Memory Consistency Models

Simon Cooksey1, Sarah Harris1, Mark Batty1, Radu Grigore1, and
Mikoláš Janota2

1 University of Kent, Canterbury
{sjc205,seh53,mjb211,rg399}@kent.ac.uk

2 IST/INESC-ID, University of Lisbon

Abstract. We present PrideMM, an efficient model checker for second-
order logic enabled by recent breakthroughs in quantified satisfiability
solvers. We argue that second-order logic sits at a sweet spot: constrained
enough to enable practical solving, yet expressive enough to cover an
important class of problems not amenable to (non-quantified) satisfiability
solvers. To the best of our knowledge PrideMM is the first automated
model checker for second-order logic formulae.

We demonstrate the usefulness of PrideMM by applying it to prob-
lems drawn from recent work on memory specifications, which define the
allowed executions of concurrent programs. For traditional memory speci-
fications, program executions can be evaluated using a satisfiability solver
or using equally powerful ad hoc techniques. However, such techniques
are insufficient for handling some emerging memory specifications.

We evaluate PrideMM by implementing a variety of memory specifi-
cations, including one that cannot be handled by satisfiability solvers. In
this problem domain, PrideMM provides usable automation, enabling a
modify-execute-evaluate pattern of development where previously manual
proof was required.

1 Introduction

This paper presents PrideMM, an efficient model checker for second-order (SO)
logic. PrideMM is used to automatically evaluate tests under the intricate mem-
ory specifications3 of aggressively optimised concurrent languages, where no
automated solution currently exists, and it is compared to existing tools over a
simpler class of memory specifications.

We argue that SO logic is a sweet spot: restrictive enough to enable efficient
solving, yet expressive enough to extend automation to a new class of memory
specifications that seek to solve open problems in concurrent language design.
PrideMM enables a modify-execute-evaluate pattern of memory-specification
development, where changes are quickly implemented and automatically tested.

3 The paper uses the term ‘memory specification’ instead of ‘memory (consistency)
model’, and reserves the word ‘model’ for its meaning from logic.

2 Authors Suppressed Due to Excessive Length

Memory specifications define what values may be read in a concurrent system.
Current evaluators rely on ad hoc algorithms [3,6,14] or satisfiability (SAT)
solvers [40]. However, flaws in existing language memory specifications [5] — where
one must account for executions introduced through aggressive optimisation —
have led to a new class of memory specifications [22,20] that cannot be practically
solved using existing ad hoc or SAT techniques.

Many memory specifications are definable in ∃SO in a natural way and one
can simulate them using SAT solvers. We demonstrate this facility of PrideMM
for a realistic C++ memory specification [24], reproducing previous results [40,39].
But, some memory specifications are naturally formulated in higher-order logic.
For example, the Jeffrey-Riely specification (J+R) comes with a formalisation,
in the proof assistant Agda [11], that clearly uses higher-order features [20]. We
observed that the problem of checking whether a program execution is allowed
by J+R can be reduced to the model checking problem for SO. From a program
execution, one obtains an SO structure A on an universe of size n, and then one
asks whether A |= JRn, where

JRn := ∃X
(
TCn(AeJn)(∅, X) ∧ F(X)

)
AeJn(P,Q) :=

sub1(P,Q) ∧ V(P) ∧ V(Q) ∧

∀X
(

TCn(AJ)(P,X)→ ∃Y
(
TCn(AJ)(X,Y) ∧ J(Y,Q)

))
We will define precisely these formulae later (§ 5.4). For now, observe that the
formula JRn is in ∃∀∃SO. In practice, this means that it is not possible to use
SAT solvers, as that would involve an exponential explosion. That motivates
our development of an SO model checker. It is known that SO captures the
polynomial hierarchy [27, Corollary 9.9], and the canonical problem for the
polynomial hierarchy is quantified satisfiability. Hence, we built our SO model
checker on top of a quantified satisfiability solver (QBF solver), QFUN [17].

The contributions of our work are as follows:

1. we present a model checker for SO, built on top of QBF solvers;
2. we reproduce known simulation results for traditional memory specifications;
3. we simulate a memory specification (J+R) that is a representative of a class

of memory specifications that are out of the reach of traditional simulation
techniques.

2 Overview

Figure 1 shows the architecture of our memory-specification simulator. The
input is a litmus test written in the LISA language, and the output is a boolean
result. LISA is a programming language that was designed for studying memory
specifications [1]. We use LISA for its compatibility with the state-of-the-art
memory-specification checker Herd7 [3]. We transform the input program into
an event structure [41]. The memory-specification generator (MSG) produces
an SO formula. We have a few interchangeable MSGs (§ 5). For some memory

PrideMM: Second Order Model Checking for Memory Consistency Models 3

specifications (§ 5.1, § 5.2, § 5.3), which Herd7 can handle as well, the formula
is in fact fixed and does not depend at all on the event structure. For other
memory specifications (such as § 5.4), the MSG might need to look at certain
characteristics of the structure (such as its size). Finally, both the second-order
structure and the second-order formula are fed into a solver, giving a verdict for
the litmus test.

LISA AST
Event

Structure

Formula
(φ)

Structure
(A)

SO Solver Result (B)
Parse

MSG

Convertor

Fig. 1. From a LISA test case to a Y/N answer, given by the SO solver.

We are able to do so because of a key insight: relational second-order logic
represents a sweet-spot in the design space. On the one hand, it is expressive
enough such that encoding memory specifications is natural. On the other hand,
it is simple enough such that it can be solved efficiently, using emerging QBF
technology.

2.1 Memory Specifications

A memory specification describes the executions allowed by a shared-memory
concurrent system; for example, under sequential consistency (SC) [25] memory
accesses from all threads are interleaved and reads take their value from the
most recent write of the same variable. Processor speculation, memory-subsystem
reordering and compiler optimisations lead mainstream languages and processors
to violate SC, and we say such systems exhibit relaxed concurrency. Relaxed
concurrency is commonly described in an axiomatic specification (e.g. SC, ARM,
Power, x86, C++ specifications [3]), where each program execution is represented
as a graph with memory accesses as vertices, and edges representing program
structure and dynamic memory behaviour. A set of axioms permit some execution
graphs and forbid others.

Figure 2 presents a litmus test — a succinct pseudocode program designed to
probe for a particular relaxed behaviour — together with an execution graph and
an axiom. We shall discuss each in turn.

The test, called LB+ctrl, starts with x and y initialised to 0, then two threads
concurrently read and conditionally write 1 back to their respective variables.
The outcome r1 = 1 ∧ r2 = 1 (1/1) is unintuitive, and it cannot result from SC:
there is no interleaving that agrees with the program order and places the writes
of 1 before the reads for both x and y.

In an axiomatic specification, the outcome specified by the test corresponds
to the execution graph shown in Figure 2. Initialisation is elided, but the read

4 Authors Suppressed Due to Excessive Length

a: Rx 1

b: W y 1

c: R y 1

d: W x 1

rf

rf
po po

initially x = 0, y = 0

r1 = x r2 = y

if (r1 == 1) if (r2 == 1)

{y = 1} {x = 1}
r1 == 1, r2 == 1 allowed?

acyclic(po ∪ rf)

Fig. 2. LB+ctrl, an axiomatic execution of it, and an axiom that forbids it.

initially x = 0, y = 0

r1 = x r2 = y

if (r1 == 1) if (r2 == 1)

{y = 1} {x = 1}
else

{x = 1}
r1 == 1, r2 == 1 allowed?

Init

Rx 0

a

Rx 1

b

W y 1
c

R y 0
d

W x 1

e

R y 1
f

W x 1

g

Fig. 3. LB+false-dep and the corresponding event structure.

and write of each thread is shown with po edges reflecting program order and rf
edges linking writes to reads that read from them. The axiom of Figure 2 forbids
the outcome 1/1 as the corresponding execution contains a cycle in po ∪ rf . The
SC, x86, Power and ARM specifications each include a variant of this axiom, all
forbidding 1/1, whereas the C++ standard omits it [6] and allows 1/1.

MemSAT [39] and Herd7 [3] automatically solve litmus tests for axiomatic
specifications using a SAT solver and ad hoc solving respectively, but not all
memory specifications fit the axiomatic paradigm.

Axiomatic specifications do not fit optimised languages. Languages like C++ and
Java perform dependency-removing optimisations that complicate their memory
specifications. For example, the second thread of the LB+false-dep test in Figure 3
can be optimised using common subexpression elimination to r2=y; x=1;. On
ARM and Power, this optimised code may be reordered, permitting the relaxed
outcome 1/1, whereas the syntactic control dependency of the original would
make 1/1 forbidden. It is common practice to use syntactic dependencies to
enforce ordering on hardware, but at the language level the optimiser removes
these false dependencies.

The memory specification of the C++ standard [15] is flawed because its
axiomatic specification cannot draw a distinction between the executions leading
to outcome 1/1 in LB+ctrl and LB+false-dep: to see that the dependency is false,
one must consider more than one execution path, but axiomatic specifications
judge single executions only [5].

Event structures capture the necessary information. A new class of specifications
aims to fix this by ordering only real dependencies [22,20,31,12]. With a notable
exception [22], these specifications are based on event structures, where all paths of
control flow are represented in a single graph. Figure 3 presents the event structure
for LB+false-dep. Program order is represented by arrows (). Conflict ()

PrideMM: Second Order Model Checking for Memory Consistency Models 5

links events where only one can occur in an execution (the same holds for their
program-order successors). For example, on the left-hand thread, the load of
x can result in a read of value 0 (event a) or a read of value 1 (event b), but
not both. Conversely, two subgraphs unrelated by program-order or conflict, e.g.
{a, b, c} and {d, e, f, g}, represent two threads in parallel execution.

It should be clear from the event structure in Figure 3 that regardless of the
value read from y in the right-hand thread, there is a write to x of value 1; that is,
the apparent dependency from the load of y is false and could be optimised away.
Memory specifications built above event structures can recognise this pattern
and permit relaxed execution.

The Jeffrey and Riely specification. J+R is built above event structures and
correctly identifies false dependencies [20]. Conceptually, the specification is
related to the Java memory specification [29]: in both, one constructs an execution
stepwise, adding only memory events that can be justified from the previous steps.
The sequence captures a causal order that prevents cycles with real dependencies.
While Java is too strong, J+R allows writes that have false dependencies on
a read to be justified before that read. To do this, the specification recognises
confluence in the program structure: regardless of the execution path, the write
will always be made. This search across execution paths involves an alternation
of quantification that current ad hoc and SAT-based tools cannot efficiently
simulate. However, the problem is amenable to QBF solvers.

2.2 Developing SC in SO Logic

The SC memory specification can be expressed as an axiomatic model [3] using
coherence order, a per-variable total order of write events. An execution is
allowed if there exists a reads-from relation rf and a coherence order co such
that the transitive closure of rf ∪ co ∪ (rf −1; co) ∪ po is acyclic. Here, po is
the (fixed) program-order relation, and it is understood that co and rf satisfy
certain further axioms. In our setting, we describe the sequentially consistent
specification as follows. We represent rf and co by existentially-quantified SO
arity-2 variables Yrf and Yco , respectively. For example, to say (x, y) ∈ co, we
use the formula Yco(x, y). The program order po is represented by an interpreted
arity-2 symbol <. Then, the SO formula that represents rf ∪ co ∪ (rf −1; co) ∪ po
is

R(y, z) := Yrf (y, z) ∨Yco(y, z) ∨ ∃x
(
Yrf (x, z) ∧Yco(x, y)

)
∨ (y < z)

The definition from above should be interpreted as a macro expansion rule: the
left-hand side R(y, z) is a combinator that expands to the formula on right-hand
side. To require that the transitive closure of R is acyclic we require that there
exists a relation that includes R, is transitive, and irreflexive:

∃Z
(
sub2(R, Z) ∧ trans(Z) ∧ irrefl(Z)

)

6 Authors Suppressed Due to Excessive Length

The combinators sub2, trans, irrefl are defined as one would expect. For example,
sub2(P,Q), which says that the arity-2 relation P is included in the arity-2
relation Q, is ∀xy

(
P (x, y)→ Q(x, y)

)
. In short, the translation from the usual

formulation of memory specifications into the SO logic encoding that we propose
is natural and almost automatic.

To represent programs and their behaviours uniformly for all memory speci-
fications in § 5, we use event structures. These have the ability to represent an
overlay of potential executions. Some memory specifications require reasoning
about several executions at the same time: this is a salient feature of the J+R
memory specification.

Once we have the program and its behaviour represented as a logic structure A
and the memory specification represented as a logic formula φ, we ask whether
the structure satisfies the formula, written A |= φ. In other words, we have to
solve a model-checking problem for second-order logic, which reduces to QBF
solving because the structure A is finite.

3 Preliminaries

To introduce the necessary notation, we recall some standard definitions [27]. A
(finite, relational) vocabulary σ is a finite collection of constant symbols (1, . . . , n)
together with a finite collection of relation symbols (q, r, . . .). A (finite, relational)
structure A over vocabulary σ is a tuple 〈A,Q,R, . . . 〉 where A = {1, . . . , n} is a
finite set called universe with several distinguished relations Q,R, . . . We assume
a countable set of first-order variables (x, y, . . .), and a countable set of second-
order variables (X, Y , . . .). A variable α is a first-order variable or a second-order
variable; a term t is a first-order variable or a constant symbol; a predicate P is a
second-order variable or a relation symbol. A (second-order) formula φ is defined
inductively: (a) if P is a predicate and t1, . . . , tk are terms, then P (t1, . . . , tk) is
a formula4; (b) if φ1 and φ2 are formulae, then φ1 ◦ φ2 is a formula, where ◦ is
a boolean connective; and (c) if α is a variable and φ is a formula, then ∃αφ
and ∀αφ are formulae. We assume the standard satisfaction relation |= between
structures and formulae.

The logic defined so far is known as relational SO. If we require that all
quantifiers over second-order variables are existentials, we obtain a fragment
known as ∃SO. For example, the SC specification of § 2.2 is in ∃SO.

The Model Checking Problem. Given a structure A and a formula φ, determine
if A |= φ. We assume that the relations of A are given by explicitly listing their
elements. The formula φ uses the syntax defined above.

Combinators. We will build formulae using the combinators defined below. This
simplifies the presentation, and directly corresponds to an API for building

4 we make the usual assumptions about arity

PrideMM: Second Order Model Checking for Memory Consistency Models 7

formulae within PrideMM.

subk(P k, Qk) := ∀x
(
P k(x) → Qk(x)

)
id(x, y) := (x = y)

eqk(P k, Qk) := ∀x
(
P k(x) ↔ Qk(x)

)
inv(P 2)(x, y) := P 2(y, x)

seq(P 2, Q2)(x, z) := ∃y
(
P 2(x, y) ∧Q2(y, z)

)
irrefl(P 2) := ∀x¬P 2(x, x)

inj(P 2) := sub2
(
seq(P 2, inv(P 2)), id

)
or(R,S)(x, y) := R(x, y) ∨ S(x, y)

trans(P 2) := sub2
(
seq(P 2, P 2), P 2

)
maybe(R)(x, y) := or(id,R)(x, y)

acyclic(P 2) := ∃X2
(
sub2(P 2, X2) ∧ trans(X2) ∧ irrefl(X2)

)
TC0(R) := eq1

TCn+1(R)(P 1, Q1) := eq1(P 1, Q1) ∨ ∃X1
(
R(P 1, X1) ∧ TCn(R)(X1, Q1)

)
By convention, all quantifiers that occur on the right-hand side of the definitions
above are over fresh variables. Above, P k and Qk are arity-k predicates, x and y
are first-order variables, and R and S are combinators.

Let us discuss two of the more interesting combinators: acyclic and TC. A
relation P is acyclic if it is included in a relation that is transitive and irreflexive.
We remark that the definition of acyclic is carefully chosen: even slight variations
can have a strong influence on the runtime of solvers [18]. The combinator TC for
bounded transitive closure is interesting for another reason: it is higher-order —
applying an argument (R) relation in each step of its expansion. By way of
example, let us illustrate its application to the subset combinator sub1.

TC1(sub1)(P,Q)

= eq1(P,Q) ∨ ∃X
(
sub1(P,X) ∧ TC0(sub1)(X,Q)

)
=

{
∀x1

(
P (x1) ↔ Q(x1)

)
∨

∃X
(
∀x2

(
P (x2) → X(x2)

)
∧ eq1(X,Q)

)
=

{
∀x1

(
P (x1) ↔ Q(x1)

)
∨

∃X
(
∀x2

(
P (x2) → X(x2)

)
∧ ∀x3

(
X(x3) ↔ Q(x3)

))
In the calculation above, P , Q and X have arity 1.

4 SO Solving through QBF

From a reasoning perspective, SO model-checking is a highly non-trivial task
due to quantifiers. In particular, quantifiers over relations, where the size of the
search-space alone is daunting. For a universe of size n there are 2n

2

possible

binary relations, and there are 2n
k

possible k-ary relations.5

A relation is uniquely characterised by a vector of Boolean values, each
determining whether a certain tuple is in the relation or not. This insight lets
us formulate a search for a relation as a SAT problem, where a fresh Boolean
variable is introduced for any potential tuple in the relation. Even though the
translation is exponential, it is a popular method in finite-model finding for
first-order logic formulae [13,38,33].

However, in the setting of SO, a SAT solver is insufficient since the input
formula may contain alternating quantifiers. We tackle this issue by translating

5 Finding constrained finite relations is NEXP-TIME complete [26].

8 Authors Suppressed Due to Excessive Length

to quantified Boolean formulae (QBF), rather than to plain SAT. The translation
is carried out in three stages.

1. each interpreted relation is in-lined as a disjunction of conjunctions over the
tuples where the relation holds;

2. first-order quantifiers are expanded into Boolean connectives over the elements
of the universe, i.e. ∀xφ leads to one conjunct for each element of the universe
and ∃xφ leads to one disjunct for each element of the universe;

3. all atoms now are ground and each atom is replaced by a fresh Boolean
variable, which is inserted under the same type of quantifier as the atom.

For illustration, consider the formula ∃X∀Y ∀z
(
Y (z) → X(z)

)
and the

universe A = {1, 2}. The formula requires a set X that is a superset of all
sets. Inevitably, X has to be the whole domain. The QBF formulation is
∃x1x2∀y1y2

(
(y1 → x1

)
∧
(
y2 → x2)

)
. Intuitively, rather than talking about a

set, we focus on each element separately, which is enabled by the finiteness of the
universe. Using QBF enables us to arbitrarily quantify over the sets’ elements.

PrideMM enables exporting the QBF formulation into the QCIR format [21],
which is supported by a bevy of QBF solvers. However, since most solvers only
support prenex form, PrideMM, also additionally prenexes the formula, where it
attempts to heuristically minimise the number of quantifier levels.

The experimental evaluation showed that the QFUN solver [17] performs the
best on the considered instances, see § 6. While the solver performs very well on
the J+R litmus tests, a couple of instances were left unsolved. Encouraged by the
success of QFUN, we built a dedicated solver that integrates the translation to
QBF and the solving itself. The solver represents the formula in dedicated hash-
consed data structures (the formulae grow in size considerably). The expansion of
first-order variables is done directly on these data structures while also simplifying
the formula on the go. The solver also directly supports non-prenex formulation
(see [19] for non-prenex QBF solving). The solver applies several preprocessing
techniques before expanding the first-order variables, such as elimination of
relations that appear only in positive or only in negative positions in the formula.

5 Memory Specification Encodings

In this section, we show that many memory specifications can be expressed
conveniently in second-order logic. We represent programs and their behaviours
with event structures: this supports the expression of axiomatic specifications
such as C++, but also the higher-order specification of J+R. For a given program,
its event structure is constructed in a straightforward way: loads give rise to
mutually conflicting read events and writes to write events [20]. We express the
constraints over event structures with the following vocabulary, shared across all
specifications.

Vocabulary. A memory specification decides if a program is allowed to have a
certain behaviour. We pose this as a model checking problem, A |= φ, where A

PrideMM: Second Order Model Checking for Memory Consistency Models 9

captures program behaviour and φ the memory specification. The vocabulary
of A consists of the following symbols:

– arity 1:read, write, final
– arity 2: ≤, conflict, justifies, sloc, =

Sets read and write classify read and write events. The symbol final, another
set of events, identifies the executions that exhibit final register states matching
the outcome specified by the litmus test.

Events x and y are in program order, written x ≤ y, if event x arises
from an earlier statement than y in the program text. We have conflict(x, y)
between events that cannot belong to the same execution; for example, a load
statement gives rise to an event for each value it might read, but an execution
chooses one particular value, and contains only the corresponding event. We
write justifies(x, y) when x is a read and y is a write to the same memory
location of the same value. We have sloc(x, y) when x and y access the same
memory location. Identity on events, { (x, x) | x ∈ A }, is denoted by =.

Configurations and Executions. We distinguish two types of sets of events. A
configuration is a set of events that contains no conflict and is downward closed
with respect to ≤; that is, X is a configuration when V(X) holds, where the
V combinator is defined by

V(X) :=

∀x∀y

((
X(x) ∧X(y)

)
→ ¬conflict(x, y)

)
∧ ∀y

(
X(y)→ ∀x

(
(x ≤ y)→ X(x)

))
We say that a configuration X is an execution of interest when every final

event is either in X or in conflict with an event in X; that is, X is an execution
of interest when F(X) holds, where the F combinator is defined by

F(X) := V(X) ∧ ∀x

((
final(x) ∧ ¬X(x)

)
→

∃y
(
conflict(x, y) ∧ final(y) ∧X(y)

))

Intuitively, we shall put in final all the maximal events (according to ≤) for
which registers have the desired values.

Notations. In the formulae below, X will stand for a configuration, which may be
the execution of interest. Variables Yrf , Yco , Yhb and so on are used to represent
the relations that are typically denoted by rf , co, hb, . . . Thus, X has arity 1,
while Yrf , Yco , Yhb , . . . have arity 2.

In what follows, we present four memory specifications: sequential consistency
(§ 5.1), release–acquire (§ 5.2), C++ (§ 5.3), and J+R (§ 5.4). The first three can
be expressed in ∃SO (and in first-order logic). The last one uses both universal
and existential quantification over sets. For each memory specification, we shall
see their encoding in second-order logic.

10 Authors Suppressed Due to Excessive Length

5.1 Sequential Consistency

The SC spectification allows all interleavings of threads, and nothing else. It is
described by the following SO sentence:

SC := ∃XYcoYrf

(
F(X) ∧ co(X,Yco) ∧ rf(X,Yrf) ∧ acyclic(R(Yco ,Yrf))

)
Intuitively, we say that there exists a coherence order relation Yco and a reads-
from relation Yrf which, when combined in a certain way, result in an acyclic
relation R(Yco ,Yrf). The formula co(X,Yco) says that Yco satisfies the usual
axioms of a coherence order with respect to the execution X; and the formula
rf(X,Yrf) says that Yrf satisfies the usual axioms of a reads-from relation with
respect to the execution X. Moreover, the formula F(X) asks that X is an
execution of interest, which results in registers having certain values.

co(X,Yco) :=

trans(Yco) ∧

∀xy

((
X(x) ∧X(y) ∧ write(x) ∧ write(y) ∧ sloc(x, y) ∧ (x 6= y)

)
↔
(
Yco(x, y) ∨Yco(y, x)

))

rf(X,Yrf) :=

inj(Yrf) ∧ sub2(Yrf , justifies) ∧

∀y
((

read(y) ∧X(y)
)
→ ∃x

(
write(x) ∧X(x) ∧Yrf (x, y)

))
When X is a potential execution and Yco is a potential coherence-order relation,

the formula co(X,Yco) requires that the writes in X for the same location include
some total order. Because of the later condition that R(Yco ,Yrf) is acyclic, Yco is
in fact required to be a total order per location. When X is a potential execution
and Yrf is a potential reads-from relation, the formula rf(X,Yrf) requires that
Yrf is injective, is a subset of justifies, and relates all the reads in X to some
write in X.

The auxiliary relation R(Yco ,Yrf) is the union of strict program-order (<),
reads-from (Yrf), coherence-order (Yco), and the from-reads relation:

R(Yco ,Yrf)(y, z) := (y < z) ∨Yco(y, z) ∨Yrf (y, z) ∨ ∃x
(
Yco(x, z) ∧Yrf (x, y)

)

5.2 Release–Acquire

Release–Acquire is a simple relaxed memory specification, which is represented
straightforwardly in SO logic. It is captured by the formula RA using the vocab-
ulary established in the definition of SC:

RA := ∃XYcoYrf

F(X) ∧ co(X,Yco) ∧ rf(X,Yrf) ∧ acyclic(Yco)

∧ ∃Yhb

sub2(<,Yhb) ∧ sub2(Yrf ,Yhb) ∧ trans(Yhb)

∧ irrefl(Yhb) ∧ irrefl(seq(Yco ,Yhb))

∧ irrefl(seq(inv(Yrf), seq(Yco ,Yhb)))

The existential SO variable Yhb over-approximates a relation traditionally called
happens-before.

PrideMM: Second Order Model Checking for Memory Consistency Models 11

5.3 C++

To capture the C++ specification in SO logic, we follow the Herd7 specification
of Lahav et al. [24]. Their work introduces necessary patches to the specification
of the standard [6] but also includes fixes and adjustments from prior work [4,23].
The specification is more nuanced than the SC and RA specifications and requires
additions to the vocabulary of A together with a reformulation for efficiency, but
the key difference is more fundamental. C++ is a catch-fire semantics: programs
that exhibit even a single execution with a data race are allowed to do anything —
satisfying every expected outcome. This difference is neatly expressed in SO
logic:

CPP := ∃XYcoYrf Yαβ

(
co(X,Yco) ∧ rf(X,Yrf) ∧ hb(Yαβ ,Yrf)

∧M(Yαβ ,Yco ,Yrf) ∧ (F(X) ∨ C(Yαβ ,Yrf))

)

The formula reuses co(X,Yco), rf(X,Yrf) and F(X) and includes three new
combinators: hb(Yαβ ,Yrf), M(Yαβ ,Yco ,Yrf) and C(Yαβ ,Yrf). hb(Yαβ ,Yrf) con-
strains a new over-approximation, Yαβ , used for building a transitive relation.
M(Yαβ ,Yco ,Yrf) captures the conditions imposed on a valid C++ execution,
and is the analogue of the conditions applied in SC and RA. C(Yαβ ,Yrf) holds if
there is a race in the execution X. Note that the expected outcome is allowed
if F(X) is satisfied or if there is a race and C(Yαβ ,Yrf) is true, matching the
catch-fire semantics.

New vocabulary. C++ Read-modify-write operations load and store from memory
in a single atomic step: a new rmw relation links the corresponding reads and
writes. C++ fence operations introduce new events and the set fences identifies
them. The programmer annotates each memory access and fence with a memory
order parameter that sets the force of inter-thread synchronisation created by the
access. For each choice, we add a new set: na, rlx, acq, rel, acq-rel, and sc.

Over-approximation in happens before. The validity condition, M(Yαβ ,Yco ,Yrf),
and races C(Yαβ ,Yrf), hinge on a relation called happens-before. We over-
approximate transitive closures in the SO logic for efficiency, but Lahav et
al. [24] define happens-before with nested closures that do not perform well.
Instead we over-approximate a reformulation of happens-before that flattens the
nested closures into a single one (see Appendix A).

We define a combinator for happens-before, HB(Yαβ ,Yrf), that is used in
M(Yαβ ,Yco ,Yrf) and C(Yαβ ,Yrf). It takes as argument an over-approximation of
the closure internal to the reformed definition of happens-before, Yαβ . hb(Yαβ ,Yrf)
constrains Yαβ , requiring it to be transitive and to include the conjuncts of the

12 Authors Suppressed Due to Excessive Length

closure, α and β below.

HB(Yαβ ,Yrf) := or(<, seq(maybe(<), swbegin(Yrf),Yαβ , swend(Yrf),maybe(<)))

α(Yrf) := seq(swend(Yrf),maybe(<), swbegin(Yrf))

β(Yrf) := seq(Yrf , rmw)

hb(Yαβ ,Yrf) :=

{
trans(Yαβ)

∧ sub2(id,Yαβ) ∧ sub2(α(Yrf),Yαβ) ∧ sub2(β(Yrf),Yαβ)

5.4 Jeffrey–Riely

The J+R memory specification is captured by a sentence JRn, parametrised by
an integer n. Unlike the formulae we saw before, JRn makes use of three levels of
quantifiers (∃∀∃), putting it on the third level of the polynomial hierarchy. We
begin by lifting6 justifies from events to sets of events P and Q:

J(P,Q) := ∀y

((
¬P (y) ∧Q(y) ∧ read(y)

)
→ ∃x

(
P (x) ∧ write(y) ∧ justifies(x, y)

))
AJ(P,Q) := J(P,Q) ∧ sub1(P,Q) ∧ V(P) ∧ V(Q)

We read J as ‘justifies’, and AJ as ‘always justifies’. Next, we define what Jeffrey
and Riely call ‘always eventually justify’

AeJn(P,Q) :=

sub1(P,Q) ∧ V(P) ∧ V(Q) ∧

∀X
(

TCn(AJ)(P,X)→ ∃Y
(
TCn(AJ)(X,Y) ∧ J(Y,Q)

))
The size of the formula TCn(AeJm)(P,Q) we defined above isΘ(mn). In particular,
it is bounded. Finally, we let7

JRn := ∃X
(
TCn(AeJn)(∅, X) ∧ F(X)

)
and ask solve the model checking problem A |= JRn. Since the formulae above
are in MSO, it is sufficient to pick n := 2|A|. Since all bounded transitive closures
include the subset relation, they are monotonic, and it suffices, in fact, to pick
n := |A|. For actual solving, we will use this observation.

6 Evaluation

We evaluate our tool in the context of Herd7 [3], which is a standard tool among
memory specification researchers for building axiomatic memory specifications. No
similar tool exists for higher-order event structure based memory specifications.

6 Our definition of J is different from the original one [20]: we require that only new
reads are justified, by including the conjunct ¬P (y). Without this modification, our
solver’s results disagree with the hand-calculations reported by Jeffrey and Riely;
with this modification, the results agree.

7 The symbol ∅ denotes the empty unary relation, as expected.

PrideMM: Second Order Model Checking for Memory Consistency Models 13

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S
B

S
B

-8

S
B

-1
6

IR
IW

R
W

C

JC
TC

6

JC
TC

1
3

LB

M
P-

p
a
ss

M
P-

fa
il

JC
TC

1

JC
TC

2

JC
TC

3

JC
TC

4

JC
TC

5

JC
TC

6

JC
TC

7

JC
TC

8

JC
TC

9

JC
TC

1
0

PrideMM
Herd

J+R SpecificationC++ Specification

Fig. 4. Comparison of PrideMM’s performance in contrast to Herd7 [3].

6.1 Comparison to existing techniques

In figure Fig. 4 we compare the performance and capabilities of PrideMM to
Herd7, the de facto standard tool for building axiomatic memory specifications.
Herd7 and PrideMM were both executed on a machine equipped with an Intel
i5-5250u CPU and 16 GB of memory. We choose not to compare our tool to
MemSAT [39], as there are more memory specifications implemented for Herd7
in the CAT language [2] than there are for MemSAT.

Performance. Notably Herd7’s performance is very favourable in contrast to
the performance of PrideMM, however there are some caveats. The performance
of PrideMM is largely adequate, with most of the standard litmus tests taking
less than 2 seconds to execute. y ≤ 1s is highlighted on the chart. We find
that our QBF technique scales better than Herd7 with large programs. This is
demonstrated in the SB-16 test, a variant of the “store buffering” litmus test with
16 threads. The large number of combinations for quantifying the existentially
quantified relations which are explored näıvely by Herd7 cause it to take a
long time to complete. In contrast, smarter SAT techniques handle these larger
problems handily.

Expressiveness. We split the chart in figure Fig. 4 into 2 sections, the left-hand
side of the chart displays a representative subset of common litmus tests showing
PrideMM’s strength and weaknesses. These litmus tests are evaluated under
the C++ memory specification. Note that these include tests with behaviour
expected to be observable and unobservable, hence there being two MP bars.
The C++ memory specification is within the domain of memory specifications
that Herd7 can solve, as it requires only existentially quantified relations.

The right-hand half of the chart is the first 10 Java causality test cases run
under the J+R specification, which are no longer expressible in Herd7. PrideMM
solves these in reasonable time, with most tests solved in less than 10 minutes.

14 Authors Suppressed Due to Excessive Length

Prob. SAT caqe (s) qfun (s) qfm (s)
1 N ⊥ 610 2
2 N ⊥ 23 2
3 Y ⊥ ⊥ 222
4 Y ⊥ 2 5
5 Y ⊥ 78 51
6 N 5 4 1
7 Y ⊥ 280 56
8 N ⊥ 2 2
9 N ⊥ 2 1

Prob. SAT caqe (s) qfun (s) qfm (s)
10 Y ⊥ 36 10
11 Y ⊥ 598 335
13 Y 1 1 1
14 Y ⊥ 29 33
15 Y ⊥ 512 157
16 N ⊥ ⊥ 12
17 N ⊥ 39 311
18 N ⊥ 359 190
#17 #2 #15 #17

Fig. 5. Solver approaches for PrideMM on Java Causality Test Cases. ⊥ represents
timeout or mem-out.

Our J+R tests replicate the results found in the original paper, but where they
use laborious manual proof in the Agda proof assistant, PrideMM validates the
results automatically.

6.2 QBF vs SO Solver Performance

PrideMM enables emitting the SO logic formulae and structures directly for
the SO solver, or we can convert to a QBF query (see § 4). This allows us to
use our SO solver as well as QBF solvers. We find that the SO solver affords
us a performance advantage over the QBF solver in most of the Java causality
test cases, where performance optimisations for alternating quantification are
applicable.

We include the performance of the QBF solvers CAQE and QFUN, the
respective winners of the CNF and non-CNF tracks at 2017’s QBFEVAL compe-
tition [32]. Our QBF benchmarks were first produced in the circuit-like format
QCIR [21], natively supported by QFUN. The inputs to CAQE were produced
by converting to CNF through standard means, followed by a preprocessing step
with Bloqqer [7].

We can also emit the structures and formulae as an Isabelle/HOL file, which
can then be loaded into Nitpick [8] conveniently. We found that Nitpick cannot
be run over the C++ specification or the J+R specification, timing out after 1 hr
on all the litmus tests.

7 Related Work

We build on prior work from two different areas — relaxed memory specifications,
and SAT/QBF solving: the LISA frontend comes from the Herd7 memory-
specification simulator [3], the MSGs implement memory specifications that have
been previously proposed [24,20], and the SO solver is based on a state-of-the-art
QBF solver [17].

There is a large body of work on finite relational model finding in the context
of memory specifications using Alloy [16]. Alloy has been used to compare memory
specifications and find litmus tests which can distinguish two specifications [40],
and has been used to synthesise comprehensive sets of tests for a specific memory

PrideMM: Second Order Model Checking for Memory Consistency Models 15

specification [28]. Applying SAT technology in the domain of evaluating memory
specifications has been tried before, too. MemSAT [39] uses Kodkod [38], the
same tool that Alloy relies on to do relational model finding. MemSynth [10]
uses Ocelot [9] to embed relational logic into the Rosette [37] language. Our
results are consistent with the findings of MemSAT and MemSynth: SAT appears
to be a scalable and fast way to evaluate large memory specification questions.
Despite this, SAT does not widen the class of specifications that can be efficiently
simulated beyond ad hoc techniques.

There is work to produce a version of Alloy which can model higher-order
constructions, called Alloy* [30], however this is limited in that each higher order
set requires a new signature in the universe to represent it. Exponential expansion
of the sets quantified in the J+R specification leaves model finding for J+R
executions intractable in Alloy* too.

While Nitpick [8] can model higher order constructions, we found it could not
generate counter examples in a reasonable length of time of the specifications
we built. There is work to build a successor to Nitpick called Nunchaku [34],
however, at present Nunchaku does not support higher order quantification. Once
Nunchaku is more complete we intend to output to Nunchaku and evaluate its
performance in comparison to our SO solver.

There is a bevy of work on finite model finding in various domains. SAT is a
popular method for finite model finding in first-order logic formulae [13,33]. There
are constraint satisfaction-based model finders, e.g. the SEM model finder [42],
relying on dedicated symmetry and propagation. Reynolds et al. propose solutions
for finite model finding in the context of SMT [35,36] (CVC4 is in fact used as
backend to Nunchaku).

8 Conclusion

This paper presents PrideMM, a case study of the application of new solving
techniques to a problem domain with active research. PrideMM allows memory
specification researchers to build a new class of memory specifications with
richer quantification, and still automatically evaluate these specifications over
programs. In this sense we provide a Herd7-style modify-execute-evaluate pattern
of development for higher-order memory specifications that were previously
unsuitable for mechanised model finding.

16 Authors Suppressed Due to Excessive Length

References

1. Alglave, J., Cousot, P.: Syntax and analytic semantics of LISA. https://arxiv.
org/abs/1608.06583 (2016)

2. Alglave, J., Cousot, P., Maranget, L.: Syntax and analytic semantics of the weak con-
sistency model specification language CAT. https://arxiv.org/abs/1608.07531
(2016)

3. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014). https://doi.org/10.1145/2627752, http://doi.acm.org/10.
1145/2627752

4. Batty, M., Donaldson, A.F., Wickerson, J.: Overhauling SC atomics in C11 and
opencl. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016. pp. 634–648 (2016). https://doi.org/10.1145/2837614.2837637,
http://doi.acm.org/10.1145/2837614.2837637

5. Batty, M., Memarian, K., Nienhuis, K., Pichon-Pharabod, J., Sewell, P.: The
problem of programming language concurrency semantics. In: Programming Lan-
guages and Systems - 24th European Symposium on Programming, ESOP 2015,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. pp. 283–307
(2015). https://doi.org/10.1007/978-3-662-46669-8 12, https://doi.org/10.1007/
978-3-662-46669-8_12

6. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++
concurrency. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011. pp. 55–66 (2011). https://doi.org/10.1145/1926385.1926394, http:

//doi.acm.org/10.1145/1926385.1926394

7. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: The 23rd
International Conference on Automated Deduction CADE (2011)

8. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
Interactive Theorem Proving. pp. 131–146. Springer Berlin Heidelberg, Berlin,
Heidelberg (2010). https://doi.org/https://doi.org/10.1007/978-3-642-14052-5 11

9. Bornholt, J., Torlak, E.: Ocelot: A solver-aided relational logic DSL (2017), https:
//ocelot.memsynth.org/

10. Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and litmus tests. In: Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017. pp. 467–481 (2017). https://doi.org/10.1145/3062341.3062353,
http://doi.acm.org/10.1145/3062341.3062353

11. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda - A functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs
2009, Munich, Germany, August 17-20, 2009. Proceedings. Lecture Notes in Com-
puter Science, vol. 5674, pp. 73–78. Springer (2009). https://doi.org/10.1007/978-3-
642-03359-9 6, https://doi.org/10.1007/978-3-642-03359-9_6

12. Chakraborty, S., Vafeiadis, V.: Grounding thin-air reads with event structures.
PACMPL 3(POPL), 70:1–70:28 (2019), https://dl.acm.org/citation.cfm?id=
3290383

https://arxiv.org/abs/1608.06583
https://arxiv.org/abs/1608.06583
https://arxiv.org/abs/1608.07531
https://doi.org/10.1145/2627752
http://doi.acm.org/10.1145/2627752
http://doi.acm.org/10.1145/2627752
https://doi.org/10.1145/2837614.2837637
http://doi.acm.org/10.1145/2837614.2837637
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/1926385.1926394
http://doi.acm.org/10.1145/1926385.1926394
http://doi.acm.org/10.1145/1926385.1926394
https://doi.org/https://doi.org/10.1007/978-3-642-14052-5_11
https://ocelot.memsynth.org/
https://ocelot.memsynth.org/
https://doi.org/10.1145/3062341.3062353
http://doi.acm.org/10.1145/3062341.3062353
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://dl.acm.org/citation.cfm?id=3290383
https://dl.acm.org/citation.cfm?id=3290383

PrideMM: Second Order Model Checking for Memory Consistency Models 17

13. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model
finding. In: Proceedings of the CADE-19 Workshop: Model Computation - Principles,
Algorithms, Applications (2003)

14. Gray, K.E., Kerneis, G., Mulligan, D.P., Pulte, C., Sarkar, S., Sewell, P.: An
integrated concurrency and core-isa architectural envelope definition, and test
oracle, for IBM POWER multiprocessors. In: Proceedings of the 48th International
Symposium on Microarchitecture, MICRO 2015, Waikiki, HI, USA, December
5-9, 2015. pp. 635–646 (2015). https://doi.org/10.1145/2830772.2830775, http:

//doi.acm.org/10.1145/2830772.2830775
15. ISO/IEC: Programming languages – C++. Draft N3092 (March 2010), http:

//www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf
16. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Trans. Softw.

Eng. Methodol. 11(2), 256–290 (Apr 2002). https://doi.org/10.1145/505145.505149,
http://doi.acm.org/10.1145/505145.505149

17. Janota, M.: Towards generalization in QBF solving via machine learning. In: AAAI
Conference on Artificial Intelligence (2018)

18. Janota, M., Grigore, R., Manquinho, V.: On the quest for an acyclic graph. In:
RCRA (2017)

19. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with
counterexample guided refinement. Artificial Intelligence 234, 1–25 (2016).
https://doi.org/http://dx.doi.org/10.1016/j.artint.2016.01.004

20. Jeffrey, A., Riely, J.: On thin air reads towards an event structures model of
relaxed memory. In: Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science. pp. 759–767. LICS ’16, ACM, New York, NY, USA
(2016). https://doi.org/10.1145/2933575.2934536, http://doi.acm.org/10.1145/
2933575.2934536

21. Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: AAAI
Workshop: Beyond NP. AAAI Workshops, vol. WS-16-05. AAAI Press (2016)

22. Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics
for relaxed-memory concurrency. In: Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017. pp. 175–189 (2017), http://dl.acm.org/citation.cfm?id=
3009850

23. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency.
In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016. pp. 649–662 (2016). https://doi.org/10.1145/2837614.2837643,
http://doi.acm.org/10.1145/2837614.2837643

24. Lahav, O., Vafeiadis, V., Kang, J., Hur, C., Dreyer, D.: Repairing sequential
consistency in C/C++11. In: Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017. pp. 618–632 (2017). https://doi.org/10.1145/3062341.3062352,
http://doi.acm.org/10.1145/3062341.3062352

25. Lamport, L.: How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979).
https://doi.org/10.1109/TC.1979.1675439, https://doi.org/10.1109/TC.1979.

1675439
26. Lewis, H.R.: Complexity results for classes of quantificational for-

mulas. Journal of Computer and System Sciences 21(3), 317–353
(1980). https://doi.org/https://doi.org/10.1016/0022-0000(80)90027-6,
http://www.sciencedirect.com/science/article/pii/0022000080900276

https://doi.org/10.1145/2830772.2830775
http://doi.acm.org/10.1145/2830772.2830775
http://doi.acm.org/10.1145/2830772.2830775
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf
https://doi.org/10.1145/505145.505149
http://doi.acm.org/10.1145/505145.505149
https://doi.org/http://dx.doi.org/10.1016/j.artint.2016.01.004
https://doi.org/10.1145/2933575.2934536
http://doi.acm.org/10.1145/2933575.2934536
http://doi.acm.org/10.1145/2933575.2934536
http://dl.acm.org/citation.cfm?id=3009850
http://dl.acm.org/citation.cfm?id=3009850
https://doi.org/10.1145/2837614.2837643
http://doi.acm.org/10.1145/2837614.2837643
https://doi.org/10.1145/3062341.3062352
http://doi.acm.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/https://doi.org/10.1016/0022-0000(80)90027-6
http://www.sciencedirect.com/science/article/pii/0022000080900276

18 Authors Suppressed Due to Excessive Length

27. Libkin, L.: Elements of Finite Model Theory. Springer (2004)

28. Lustig, D., Wright, A., Papakonstantinou, A., Giroux, O.: Automated synthe-
sis of comprehensive memory model litmus test suites. In: Proceedings of the
Twenty-Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems. pp. 661–675. ASPLOS ’17, ACM,
New York, NY, USA (2017). https://doi.org/10.1145/3037697.3037723, http:

//doi.acm.org/10.1145/3037697.3037723

29. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005. pp.
378–391 (2005). https://doi.org/10.1145/1040305.1040336

30. Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: A general-purpose higher-
order relational constraint solver. In: ICSE (2015)

31. Pichon-Pharabod, J., Sewell, P.: A concurrency semantics for relaxed atomics
that permits optimisation and avoids thin-air executions. In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp.
622–633 (2016). https://doi.org/10.1145/2837614.2837616

32. QBF Eval 2017, http://www.qbflib.org/event_page.php?year=2017

33. Reger, G., Suda, M., Voronkov, A.: Finding finite models in multi-sorted first-order
logic. In: Creignou, N., Berre, D.L. (eds.) Theory and Applications of Satisfiability
Testing - SAT. Lecture Notes in Computer Science, vol. 9710, pp. 323–341. Springer
(2016). https://doi.org/10.1007/978-3-319-40970-2 20

34. Reynolds, A., Blanchette, J.C., Cruanes, S., Tinelli, C.: Model finding for recursive
functions in SMT. In: Automated Reasoning - 8th International Joint Conference,
IJCAR 2016, Coimbra, Portugal, June 27 - July 2, 2016, Proceedings. pp. 133–151
(2016). https://doi.org/10.1007/978-3-319-40229-1 10

35. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in
SMT. In: Computer Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. pp. 640–655
(2013). https://doi.org/10.1007/978-3-642-39799-8 42, https://doi.org/10.1007/
978-3-642-39799-8_42

36. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier
instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.)
Automated Deduction - CADE-24 - 24th International Conference on Automated De-
duction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings. Lecture Notes in Com-
puter Science, vol. 7898, pp. 377–391. Springer (2013). https://doi.org/10.1007/978-
3-642-38574-2 26, https://doi.org/10.1007/978-3-642-38574-2_26

37. Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided host
languages. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 530–541. PLDI ’14, ACM, New York,
NY, USA (2014). https://doi.org/10.1145/2594291.2594340, http://doi.acm.org/
10.1145/2594291.2594340

38. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth,
M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems,
13th International Conference, TACAS 2007, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal,
March 24 - April 1, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4424,
pp. 632–647. Springer (2007). https://doi.org/10.1007/978-3-540-71209-1 49

https://doi.org/10.1145/3037697.3037723
http://doi.acm.org/10.1145/3037697.3037723
http://doi.acm.org/10.1145/3037697.3037723
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/2837614.2837616
http://www.qbflib.org/event_page.php?year=2017
https://doi.org/10.1007/978-3-319-40970-2_20
https://doi.org/10.1007/978-3-319-40229-1_10
https://doi.org/10.1007/978-3-642-39799-8_42
https://doi.org/10.1007/978-3-642-39799-8_42
https://doi.org/10.1007/978-3-642-39799-8_42
https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1145/2594291.2594340
http://doi.acm.org/10.1145/2594291.2594340
http://doi.acm.org/10.1145/2594291.2594340
https://doi.org/10.1007/978-3-540-71209-1_49

PrideMM: Second Order Model Checking for Memory Consistency Models 19

39. Torlak, E., Vaziri, M., Dolby, J.: MemSAT: Checking axiomatic specifications
of memory models. In: Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 341–350. PLDI ’10, ACM,
New York, NY, USA (2010). https://doi.org/10.1145/1806596.1806635

40. Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically compar-
ing memory consistency models. In: Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017. pp. 190–204 (2017), http://dl.acm.org/citation.cfm?id=3009838

41. Winskel, G.: Event structures, pp. 325–392. Springer Berlin Heidelberg, Berlin,
Heidelberg (1987). https://doi.org/10.1007/3-540-17906-2 31

42. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI.
pp. 298–303. Morgan Kaufmann (1995), http://ijcai.org/Proceedings/95-1/
Papers/039.pdf

https://doi.org/10.1145/1806596.1806635
http://dl.acm.org/citation.cfm?id=3009838
https://doi.org/10.1007/3-540-17906-2_31
http://ijcai.org/Proceedings/95-1/Papers/039.pdf
http://ijcai.org/Proceedings/95-1/Papers/039.pdf

20 Authors Suppressed Due to Excessive Length

Appendix A Reformulation of happens before

Lahav et al. [24] define happens before, hb, in terms of sequenced before sb, the
C++ name for program order, and synchronises with, sw, inter-thread synchroni-
sation. Their rf and rmw relations match Yrf and rmw in our vocabulary. Fixed
sequences of memory events initiate and conclude synchronisation, and these
are captured by swbegin and swend. In the definition below, semicolon represents
forward relation composition.

sw := swbegin; (rf; rmw)∗; swend

hb := (sb ∪ sw)+

For efficiency we over-approximate transitive closures in the SO logic, but
the nesting over-approximation that follows from the structure of hb does not
perform well. Instead we over-approximate a reformulation of hb.

hb’ := sb ∪ (sb?; swbegin ; ((swend ; sb?; swbegin)) ∪ (rf; rmw))∗; swend ; sb?)

By unpacking the definition of sw, the reformulation flattens the nested
closures into a single one. The closure combines fragments of happens before
where at the start and end of the fragment, a synchronisation edge has been
initiated but not concluded. Within the closure, the synchronisation edge can be
concluded and a new one opened, or some number of read-modify-writes can be
chained together with rf.

We explain the definition of hb’ by considering the number of sw edges that
consitute a particular hb edge. If a hb edge contains no sw edge, then because
sb is transitive, the hb edge must be a single sb edge. Otherwise, the hb edge is
made up of a sequence of one or more sw edges with sb edges before, between
and after some of the sw edges. The first sw edge is itself a sequence of edges
starting with swbegin. This is followed by any number of rf; rmw edges. At the
end of the sw edge there are two possibilities: this edge was the final sw edge,
or there is another in the sequence to be initiated next. The first conjunct of
the closure, swend ; sb?; swbegin captures the closing and opening of sw edges, the
second captures the chaining of read-modify-writes. The end of the definition
closes the final sw edge with swend .

	PrideMM: Second Order Model Checking for Memory Consistency Models

