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1 Introduction
Recent work on concurrency models for systems languages has been preoccupied with solving
the thin-air problem [6–8, 16, 19, 28], where deficiencies in the language specification either reject
compiler optimisations or allow nonsensical values to be conjured from cyclic reasoning. The
thin-air problem is but one aspect of building a programming model for a systems language that
can accommodate optimising compilers. Optimisations leverage constraints implicit in the use of
dynamic memory, implicit in the programmer’s responsibility to avoid undefined behaviour (UB),
and extrinsic constraints entirely separate from the program text. In this paper, we present a model
that captures the implicit and extrinsic information used in optimisation. This model matches
the International Organization for Standardization (ISO) desiderata for the C and C++ memory
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models [34], encompassing these hitherto unmodelled details of compiler optimisation, as well as
solving the thin-air problem.

One way in which the thin-air problem has been addressed is by using semantic dependencies [17,
25, 28]: a relation over memory accesses identifying the dependencies that are left in place by
compiler optimisations. Thus far, models using semantic dependencies have only partly bridged
the gap as they still disallow many optimisations [17, 23] and work only on concrete locations.

Undefined behaviour. Consider an example where undefined behaviour allows the optimiser to
remove a syntactic dependency from a program. Here, as in all litmus tests that follow, we assume
initial writes setting x = y = 0. The statement y = 1 / !r1 only has defined behaviour when
the division is by a non-zero value, so for the program to be well-defined, r1 must equal 0.

1 int r1 = x;
2 y = 1 / !r1;

�������� 3 int r2 = y;
4 x = r2;

Example 1.1a: LB+UB+data

{
1 int r1 = x;
2 y = 1;

�������� 3 int r2 = y;
4 x = r2;

Example 1.1b: LB+UB+data

No restriction is imposed upon a program with a UB failure like division by zero: the semantics
is described as catch fire because that is an allowed outcome. The optimiser uses these corners of
the program more constructively: it assumes that these failures will be avoided in execution, and
leverages this information in its analysis prior to optimisation. Here, we may assume that !r1 is
1, and thus the write to y may be optimised to a constant write of 1. In writing 1 rather than an
expression derived from r1, this transformation has broken the dependency from the read of x
to the write of y, producing the program on the right above. The apparent data dependency in
the left-hand thread of our original program was a false dependency, and the target is now free to
reorder.

Are transformations that leverage undefined behaviour correct? If a transformation only changes
the program in cases that lead to undefined behaviour, then it is sound because either: the transfor-
mation is over dead code in a well-defined program; or the whole program has undefined behaviour,
and any transformation would be valid. Indeed, we see this optimisation performed by both GCC
and Clang1.

a)

R x α
1

W y 1/!α
2

R y β
3

W x β
4
⊑⊑ rf

rf
dp dp b)

R x α
1

W y 1
2

R y β
3

W x β
4
⊑⊑ rf

rf
dp

Example 1.2: LB+deps and LB+po+dep
The behaviour of Example 1.1a is expressed in C and C++ as a set of execution graphs, with nodes

representing memory accesses and labelled edges representing program order, ⊑, and reads from, rf.
Example 1.2a displays a possible execution graph for the program above. The best formalisation of
the C/C++ model is RC11 [21], which is faithful to C/C++ in all but one respect: RC11 forbids cycles
in ⊑ ∪ rf and C/C++ does not. In our example, RC11 would forbid the outcome r1 = 1 && r2 =
1 because of the cycle, whereas C/C++ would allow it. Unfortunately, forbidding the outcome, as in
RC11, makes the transformation to a constant write of 𝑦 unsound. In contrast, allowing all ⊑ ∪ rf
cycles, as in C/C++, permits erroneous thin-air behaviour [6, 19, 21].
There has been significant recent work to define a thin-air free semantics for C/C++ that

permits aggressive optimisations [8, 16, 19, 23, 29]. One strategy is to identify dependencies in the
program that constrain where the implementation can re-order memory accesses [17, 28]. We have

1Many of the examples of compiler optimisations presented in this paper include links to Compiler Explorer [14], that can
be used to see the optimisation in action.
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annotated the executions above with such a dependency relation, dp. Note, that after the compiler
transformation from Example 1.1a to Example 1.1b the dependency in the left-hand thread has
been removed: the dependency that appeared in the syntax of the original program was a false
dependency. By ruling out cycles in dp ∪ rf we can forbid thin-air executions and allow compiler
optimisations. The devil is of course in the detail: we must precisely define dp.
To match the behaviour of its compilers, the C/C++ memory model must admit the outcome

r1 = 1 && r2 = 1. The optimisation leveraged the possibility of division leading to undefined
behaviour, but this sort of reasoning is not well handled by any existing model — not in models
that attempt to define a dp for inclusion in an axiomatic semantics, nor in operational models like
the Promising Semantics or its successors [19, 23]. Indeed, despite the advance it represents, the
Promising Semantics 2 [9, 23] incorrectly attributes UB to Example 1.1a (see Appendix F).

Extrinsic choice. In the program above, the compiler derived information about the value of a
part of the program from its syntax: the denominator of the division could not be zero, because that
would be undefined. The compiler can use additional constraints when optimising, beyond what
can be derived from the program syntax alone — we call these extrinsic choices. For example, the
C language specification leaves compilers free to over-align objects in memory. In the following
example, the write appears to be dependent on the 16-byte alignment of the object pointed to by p.
The extrinsic choice to over-align removes this dependency and admits a reordering.

1 int∗ r1 = p;
2 if (r1 % 16 == 0)
3 y = 1;

Example 1.3a: alignment

{
1 int∗ r1 = p;
2 y = 1;

Example 1.3b: alignment

Here, the optimisation was contingent on a choice made entirely separately from the code. We can
look at the executions again, and see how the compiler’s extrinsic choice removed a dependency
from the execution graph. This thread can build an LB pattern similarly to Example 1.1a, and then
the user can observe a non-SC outcome.

R x α
1

W y 1
2
⊑ dp

Example 1.3c: alignment

{

R x α
1

W y 1
2
⊑

Example 1.3d: alignment

Dynamic memory. When a region of memory is allocated, languages like C guarantee disjointness
with existing objects [13, [basic.stc.dynamic.allocation]], and this information can be used by the
compiler to resolve questions of aliasing. In the following example, if *p and x alias, then the
accesses of Lines 3 and 4 are at the same location and cannot be reordered by the compiler. However,
the allocation of p provides a guarantee of disjointness that the compiler can leverage to reorder as
follows.

1 atomic int x = 0;
2 atomic int∗ p = malloc ( sizeof (int));

3 int r1 = ∗p;
4 x = 1;

�������� 5 int r2 = x;
6 ∗p = r2;

Example 1.4a: LB+alias+data

{

1 atomic int x = 0;
2 atomic int∗ p = malloc ( sizeof (int));

3 x = 1;
4 int r1 = ∗p;

�������� 5 int r2 = x;
6 ∗p = r2;

Example 1.4b: LB+alias+data

The memory behaviour of this program is contingent on whether ∗𝑝 and 𝑥 alias, so the memory
model must take this into account.
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1.1 Criteria for a Programming Language Memory Model
A recent ISO white paper [34] outlines desiderata for semantic dependencies along with a suite of
examples. Each of these examples probe at the definition of semantic dependencies and refine it
based upon the expectations of programmers and compiler implementers. Given this, any model
for these languages must satisfy the following criteria.
(C1) Be able to reason about dynamic memory. This includes allocation, dereferencing, and

reclamation.
(C2) Avoid throwing out any optimisation at all. This includes optimisations that: fuse successive

stores, fuse successive loads, de-duplicate repeated stores, eliminate dead code, and hoist
invariant stores.

(C3) Be aware of guarantees and invariants extrinsic to the program syntax, as semantic depen-
dencies can rely on compiler assumptions about alignment or undefined behaviour, and on
global analysis.

In this paper we will present a model using semantic dependencies that meets all of these criteria
as well as two additional criteria.
(C4) Provide a tool for automatically deriving the semantic dependencies for a given program.
(C5) Provide a justification structure that can be interrogated to explain why a particular outcome

is allowed.
Throughout this paper we will work through examples, each of which will motivate our justifi-

cation structure. We will first introduce justifications and their elaboration as a precursor to the
derivation of semantic dependencies.

1.2 Justification, Elaboration, and Executions
We describe a new thin-air free memory model called Symbolic MRD (sMRD), built on prior
work [28]. sMRD interfaces with axiomatic models like RC11 where a set of executions are derived
from the program text and filtered by a collection of axioms. sMRD intervenes on the axiomatic
model in the generation of executions. Typically these are built from the program syntax with a
simple enumeration of the read and write events in each path of control flow. sMRD replaces this
simple enumeration with an extensive calculation of the dependencies inherent in each thread,
communicating these to the axiomatic model as a dependency relation, dp, attached to each
prospective execution.

The key difference from a typical axiomatic model is that executions must be justified: we must
choose a set of justifications that covers the writes, recording — for each write — the read and
allocation events that it depends on. This justifying set will be used to derive dp, and thin-air
behaviour will be forbidden with a new axiom that forbids cycles in dp ∪ rf.
We build a set of justifications, J, that represent all the ways in which each write might occur.

We populate J initially with J0, the justifications derived directly from the program syntax. We
extend this initial set through a series of elaborations. Each elaboration accommodates a class of
compiler transformations, and adds new justifications to J. When we choose the justifying set, 𝐽𝑋 ,
for an execution, 𝑋 , it must be a subset of J.

Read events and allocations introduce symbolic values that will be resolved through constraints
applied later. These symbols are used in the representation of control and data dependencies. An
origin function maps the symbolic values back to the reads and allocations that introduced them.

Justifications take the form, (𝑃, 𝐷) ⊢𝛿 𝑤 where:
▶ 𝑃 , control dependency, is a symbolic predicate collecting the conditions enforced in the choice

of control flow that lead to the write𝑤 ;
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▶ 𝐷 , data dependency, is a set of symbols present in the expressions for the address and value
of𝑤 ;

▶ 𝛿 , the forwarding context, captures pairs of accesses that have been fused through forwarding
and elision;

▶ and,𝑤 is the write that is being justified.
We drop the 𝛿 and write (𝑃, 𝐷) ⊢ 𝑤 when the forwarding context is empty.

The justifications of an execution are flattened into a semantic dependency relation, dp, by taking
each justification; collecting the origins of all symbols in 𝑃 and 𝐷 ; and taking the cross product
with the write𝑤 , making each read a dependency of the write.

Data dependencies. To calculate the behaviour of Example 1.1a, we begin by deriving its initial
justifications. On each thread, a read introduces a new symbol for the value read, and the write
stores the value of an expression that uses this symbolic value. Thread 1 introduces 𝛼 when loading
from x on Line 1, and Thread 2 introduces 𝛽 when loading from y on Line 3. In future, symbol
names will be chosen to match the program, but remain distinct from the syntactic variables. The
initial justifications for Example 1.1a are:

(⊤, {𝛼}) ⊢ (2 :𝑊 𝑦 1/!𝛼) (⊤, {𝛽}) ⊢ (4 :𝑊 𝑥 𝛽)
The justifications record 𝛼 and 𝛽 , respectively, as the data dependencies of the writes. J0 is

sufficient to justify an execution of Example 1.1a. We derive dp from this pair of justifications to
produce the execution in Example 1.2a. This execution has a cycle in dp ∪ rf and is excluded by the
axiomatic constraints.
A series of elaboration steps (explained in detail in the following sections) introduces a further

justification, (⊤, ∅) ⊢ (2 :𝑊 𝑦 1). This justification applies to the store in Line 2, but the write event
in the justification uses a constant value of 1, rather than the expression 1/!𝛼 . This change mirrors
the observation that the only defined value for the division is 1. This justification is added to J0 to
produce the set J.

Now there is a choice in howwe justify an execution of Example 1.1a. Choosing (⊤, ∅) ⊢ (2 :𝑊 𝑦 1)
and (⊤, {𝛽}) ⊢ (4 :𝑊 𝑥 𝛽) to justify the writes, and then deriving dp, leads to the execution
in Example 1.2b, with no dependency in Thread 1. This execution has no cycle in dp ∪ rf and is
allowed by the axiomatic constraints, accommodating the optimisation performed by GCC and
Clang that leverages the possible undefined behaviour inherent in the division.

a)

1 int r1 = x;
2 if (r1 == 1)
3 y = r1;
4 else
5 y = 1;

�������� 6 int ry = y;
7 x = ry; b)

R x r1
1

W y 1
3

R y ry
6

W x ry
7

⊑⊑ rf

rf
dp

Example 1.5: LB+vafalsedep

Control dependencies. Example 1.5a features a conditional with a write in each branch. The branch
leads to two initial justifications: the first for the write in the true branch, whose predicate, 𝑟1 = 1,
records the symbolic constraint implicit in taking the first branch; and the second, similarly, for the
false branch. The third initial justification is for the write on the second thread. The initial set of
justifications, J0, is given below.

(𝑟1 = 1, {𝑟1}) ⊢ (3 :𝑊 𝑦 𝑟1) (𝑟1 ≠ 1, ∅) ⊢ (5 :𝑊 𝑦 1) (⊤, {𝑟𝑦}) ⊢ (7 :𝑊 𝑥 𝑟𝑦)
A compiler may optimise the program: first recognising that the conditional constrains the value
written on Line 3 to 1, and second recognising that the store is invariant on the value of r1. There
is no real dependency in the first thread. Steps of elaboration mirror these transformations: the
symbol 𝑟1 is assigned the value 1, according to the predicate carried by the first initial justification.
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Then an elaboration recognises equivalent writes under predicates 𝑟1 = 1 and 𝑟1 ≠ 1, adding
justifications that unify these predicates to ⊤, removing the control dependencies.

(𝑟1 = 1, ∅) ⊢ (3 :𝑊 𝑦 1) (⊤, ∅) ⊢ (3 :𝑊 𝑦 1) (⊤, ∅) ⊢ (5 :𝑊 𝑦 1)

Now we can justify an execution of the program using (⊤, ∅) ⊢ (3 :𝑊 𝑦 1) and
(⊤, {𝑟𝑦}) ⊢ (7 :𝑊 𝑥 𝑟𝑦) to produce the execution in Example 1.5b, with no dependency in the first
thread, allowing the behaviour, and by extension the motivating series of optimisations. We see
this series of optimisations being applied in both GCC and Clang.

a)

1 int r1 = x;
2 int r2 = x;
3 y = r2;

b)

R x r1
1

R x r2
2

W y r1
3

⊑

⊑

dp

Example 1.6: FWD

Forwarding context. Example 1.6a has two successive reads, Lines 1 and 2, with no intervening
events, followed by a write of the second value read. The initial justification is on the left below,
and it writes value 𝑟2. A compiler might fuse the two reads, performing only the first. The value of
the first read is then forwarded to the write. Elaboration produces the second justification, and it
writes the value of the first read, 𝑟1.

(⊤, {𝑟2}) ⊢ (3 :𝑊 𝑦 𝑟2) (⊤, {𝑟1}) ⊢{ (1,2) } (3 :𝑊 𝑦 𝑟1)
The elaborated justification carries a forwarding context, {(1, 2)}, that records that the load on

Line 1 has been forwarded to elide the load on Line 2. In justifying an execution, we must choose a
set of justifications with consistent forwarding contexts.

2 Compiler Optimisations
In this section, we present a series of example programs. For each, we will discuss the optimisations
that may be applied and the mechanisms in sMRD that decide the behaviours of the test. Our first
examples cover the list of elaborations: value assignment, weakening, strengthening, forwarding,
and lifting. We close the section with a discussion of Example 2.8a, whose behaviour is contingent
on a contentious series of compiler optimisations. Our elaborations are abstract enough to capture
broad classes of optimisations, and extrinsic constraints can capture implementation-defined
choices. Our model allows all optimisations described by McKenney for ISO WG21, C++ [34], but
if new optimisations were recognised, and they did not fit within this machinery, then the set of
elaborations could be extended.

Value assignment. In Example 1.5a, the conditional on Line 2 constrained the value of r1 to 1. This
observation can be used to transform the write on Line 3, from a write of r1 to a write of constant 1.
sMRD accommodates this with the value assignment elaboration. The initial justification of write 3
is given on the left below, and has a predicate 𝑟1 = 1. The predicate is sufficient to resolve the value
of symbol 𝑟1 to constant 1. The value assignment elaboration introduces a new justification of write
3, on the right below, with refined value and location expressions: the constant 1 is substituted for
symbol 𝑟1 in each.

(𝑟1 = 1, {𝑟1}) ⊢ (3 :𝑊 𝑦 𝑟1)
va

{ (𝑟1 = 1, ∅) ⊢ (3 :𝑊 𝑦 1)
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This new justification can be further elaborated to remove the control dependency on 𝑟1 in a step
called lifting.

Lifting. With the new justification, (𝑟1 = 1, ∅) ⊢ (3 :𝑊 𝑦 1), gained through value assignment, we
can now apply a lifting elaboration. Lifting operates on pairs of justifications for writes with equiv-
alent locations and values: it merges their predicates to form a new justification. In Example 1.5a,
the initial justifications and one step of value assignment have given the justifications of writes 3
and 5 on the left below. Lifting combines the predicates of the two justifications and introduces
new justifications with the predicate 𝑟1 = 1 ∨ 𝑟1 ≠ 1, or equivalently ⊤.

(𝑟1 = 1, ∅) ⊢ (3 :𝑊 𝑥 1)
(𝑟1 ≠ 1, ∅) ⊢ (5 :𝑊 𝑥 1)

lift

{ (𝑟1 = 1 ∨ 𝑟1 ≠ 1, ∅) ⊢ (3 :𝑊 𝑥 1)
(𝑟1 = 1 ∨ 𝑟1 ≠ 1, ∅) ⊢ (5 :𝑊 𝑥 1) {

(⊤, ∅) ⊢ (3 :𝑊 𝑥 1)
(⊤, ∅) ⊢ (5 :𝑊 𝑥 1)

Weakening and global guarantees. Compilers often take advantage of information extrinsic to the
program syntax, and we use Ω to represent these constraints.

1 int r1 = x;
2 if (r1 <= INT_MAX )
3 y = 1;

Example 2.1a: INT_MAX

1 int r1 = x;
2 y = 1;

Example 2.1b: INT_MAX

The initial justification of Example 2.1a, (𝑟1 ≤ INT_MAX, ∅) ⊢ (3 :𝑊 𝑦 1), recognises a control
dependency on r1. One source of extrinsic guarantees are the value ranges for types, we know that
an int must range between INT_MIN and INT_MAX. We record this knowledge in the program-
wide guarantee: Ω ⇒ 𝑟1 ≤ INT_MAX. The weakening elaboration adds a new justification with
a weaker control dependency. This control dependency together with Ω must imply the control
dependency of the original justification. Here, Ω ⇒ 𝑟1 ≤ INT_MAX, so the new justification can
break the dependency on r1, by using⊤ on the right below. This new justification admits optimising
Example 2.1a to Example 2.1b; both GCC and Clang perform this optimisation.

(𝑟1 ≤ INT_MAX, ∅) ⊢ (3 :𝑊 𝑦 1)
weak

{ (⊤, ∅) ⊢ (3 :𝑊 𝑦 1)

1 int r1 = x;
2 if (! r1 != 0)
3 y = 1 / !r1;
4 else
5 y = 1 / !r1;

Example 2.2a: LB+UB+data

1 int r1 = x;
2 if (! r1 != 0)
3 y = 1;
4 else
5 y = 1 / !r1;

Example 2.2b: LB+UB+data

1 int r1 = x;
2 y = 1;

Example 2.2c: LB+UB+data

Strengthening and undefined behaviour. Returning to Example 1.1a, we relied on an assumption of
UB freedom to justify the execution in Example 1.2b: Ω ⇒!𝑟1 ≠ 0, or equivalently, Ω ⇒ 𝑟1 = 0. In
order to allow the execution we must break the data dependency on r1. We cannot immediately
perform a weakening elaboration as we do not have a control dependency, only a data dependency.

The strengthening elaboration introduces superfluous control dependencies: putting an arbitrary
predicate in conjunction with the current control dependency. Performing a strengthening that
constrains a symbol to a concrete value, and then performing a value assignment effectively
transforms a data dependency into a control dependency.

To break the dependency on r1, we first perform a strengthening operationwith predicate, !𝑟1 ≠ 0.
We gain a new justification with this as a control dependency, on the right below. Example 2.2a is a
rewrite of the program, introducing a branch corresponding to this new control dependency. This
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is for illustration only, the model merely elaborates the set of justifications.

(⊤, {𝑟1}) ⊢ (2 :𝑊 𝑦 1 / !𝑟1)
str

{ (!𝑟1 ≠ 0, {𝑟1}) ⊢ (2 :𝑊 𝑦 1 / !𝑟1)

The new justification above is a candidate for value assignment: !𝑟1 ≠ 0 ⇒ 𝑟1 = 0 ⇒!𝑟1 = 1, and
we apply that elaboration below to remove the control dependency. This elaboration is consistent
with a syntactic rewrite to produce Example 2.2b.

(!𝑟1 ≠ 0, {𝑟1}) ⊢ (2 :𝑊 𝑦 1 / !𝑟1)
va

{ (!𝑟1 ≠ 0, ∅) ⊢ (2 :𝑊 𝑦 1)

Finally, we apply a weakening elaboration to remove the control dependency: we already know
!𝑟1 ≠ 0 from Ω. This is consistent with a syntactic transformation of Example 2.2b to Example 2.2c.

(!𝑟1 ≠ 0, {𝑟1}) ⊢ (2 :𝑊 𝑦 1 / !𝑟1)
weak

{ (⊤, ∅) ⊢ (2 :𝑊 𝑦 1)

The final step of elaboration adds an independent justification of the write, removing all depen-
dencies and allowing the optimisation to Example 1.1b. This optimisation is performed by both
GCC and Clang.

We can apply strengthening, value assignment, and weakening to produce executions where the
value of a register appears to be inconsistent in multiple uses within a thread. Consider Example 2.3a,
where a write of z has been added to the first thread of Example 1.1a.

1 int r1 = x;
2 y = 1 / !r1;
3 z = r1;

�������� 4 int r2 = y;
5 x = r2;

Example 2.3a: LB+UB+data+z

1 int r1 = x;
2 y = 1;
3 z = 0;

�������� 4 int r2 = y;
5 x = r2;

Example 2.3b: LB+UB+data+z
In this test, strengthening, value assignment and weakening lead to the same independent

justification of the write on Line 2: (⊤, ∅) ⊢ (2 :𝑊 𝑦 1). The initial justification of the write on Line
3 is given below on the left, together with its elaborated justifications:

(⊤, {𝑟1}) ⊢ (3 :𝑊 𝑧 𝑟1)
str

{ (!𝑟1 ≠ 0, {𝑟1}) ⊢ (3 :𝑊 𝑧 𝑟1)

va

{ (!𝑟1 ≠ 0, ∅) ⊢ (3 :𝑊 𝑧 0)
weak

{ (⊤, ∅) ⊢ (3 :𝑊 𝑧 0)

These elaborations are consistent with the transformation of Example 2.3a to Example 2.3b.
Elaboration has added independent justifications (⊤, ∅) ⊢ (2 :𝑊 𝑦 1) and (⊤, ∅) ⊢ (3 :𝑊 𝑧 0) to J,
and with these we can justify the execution in Example 2.3c.

R x 1
1

W y 1
2

W z 0
3

R y 1
4

W x 1
5
⊑⊑

⊑

rf

rf
dp

Example 2.3c: LB+UB+data+z

Example 2.3c features inconsistent values of r1: the first read has value 1, consistent with r1
taking value 1, and write 3 to 𝑧 has value 0, consistent with r1 taking value 0. No execution
of Example 2.3a exhibits undefined behaviour: this program does not have catch-fire semantics.
We do not observe the optimisation directly in GCC or Clang, but GCC and Clang, do optimise
Example 1.1a similarly. The consequence of optimising in this example is surprising: a local variable
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appears to have taken two different values in one execution. sMRD can be made to reject this
behaviour, but we believe it is a natural consequence of the optimisations that GCC and LLVM
perform and that it should be allowed.

a)

1 atomic <int > rp [2];
2 rp [0] = 1;
3 rp [1] = 2;

4 int r1 = x;
5 ∗( rp+r1) = 0;
6 int r2 = ∗rp;
7 y = r2;

�������� 8 int ry = y;
9 x = ry;

b)

Alloc rp 2
1

W ∗rp 1
2

W ∗(rp + 1) 2
3

R x r1
4

W ∗(rp + r1) 0
5

R ∗rp r2
6

W y r2
7

R y ry
8

W x ry
9

rf

rf

rf

dp

dp

dp

dp

≤

c)

Alloc rp 2
1

W ∗rp 1
2

W ∗(rp + 1) 2
3

R x r1
4

W ∗(rp + r1) 0
5

R ∗rp r2
6

W y r2
7

R y ry
8

W x ry
9

rf

rf

rf

dp

dp

dp

dp

dp

Example 2.4: JCTC12

Pointers. So far our events have only had concrete locations; in order to support pointers we also
accept symbolic ones. This brings with it several considerations. In Example 2.4a two pointers, on
Lines 5 and 6, may alias: the expressions for the addresses that are accessed may be equal. Questions
of aliasing fall into three cases:

(1) Two pointers always point to the same location. Under the context in which they are used,
their expressions cannot be resolved to differing values.

(2) Two pointers possibly point to the same location. Their expressions can be resolved to the
same value, but also to differing values.

(3) Two pointers never point to the same location. Their expressions cannot be resolved to the
same value.

The first case is simple, they always alias, and the resulting events are at the same location,
thus we can never reorder them. The third case is simple too, they never alias, thus we can always
reorder the events. The second case is more nuanced: we cannot establish whether the locations
alias or not. We initially assume that the pointers alias and keep them in order, although elaboration
can transform the way this order is recorded, as we shall see.
Example 2.4b depicts the execution where we cannot rule out that the two pointers alias. This

execution is the first we have covered that features a preserved program order edge, ≤. ≤ edges
order events at the same location, as is the case here, but also order fences and synchronising
events. Previous work [17, 28], folded the ordering captured by ≤ into dp, but we keep it separate.
≤ edges are added to dp and rf in the axiom that we use to rule out thin-air values, which becomes
acyclic(dp ∪ ≤ ∪ rf). The execution in Example 2.4b features a dp ∪ ≤ ∪ rf cycle and is forbidden
by the model.

Elaboration, and particularly strengthening, can be used to exclude the possibility that the two
pointers alias. We can strengthen the predicate 𝑃 in the justification of write event 7 with the
property 𝑟1 ≠ 0. This choice of elaboration removes the ≤ edge: the pointers no longer alias. It
also changes dp, inducing a dependency from the origin of 𝑟1, read event 4, to write event 7. This
elaboration leads to the execution in Example 2.4c, without a ≤ edge from event 5 to 6, but with a
new dp edge from event 4 to event 7. This execution is also forbidden: the new dp edge completes
a cycle in dp ∪ rf.
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1 atomic <atomic <int >∗> p = new int;

2 int∗ rp = p;
3 ∗rp = 1;
4 x = 1;

�������� 5 int r2 = x;
6 if (r2 = 1)
7 free (p);

Example 2.5a: Free Race

1 atomic <atomic <int >∗> p = new int;

2 int∗ rp = p;
3 ∗rp = 1;
4 x. store (1, rel);

�������� 5 r2 = x.load(acq);
6 if (r2 == 1)
7 free (p);

Example 2.5b: Free Race
Introducing pointers also reintroduces a dynamic source of undefined behaviour: allocations,

reclamations, and accesses can race with each other. We can use the derived relations of RC11, and
in particular happens-before [21], to identify these races. If we have an allocation and a reclamation
or access to the same location that are not ordered by happens before we have a race. We also have
a race when we have a reclamation and an access to the same location not ordered by happens
before.

1 int r1 = x;
2 int r2 = x;
3 if (r1 == 1)
4 y = r2;
5 else
6 y = 1;

�������� 7 int ry = y;
8 x = ry;

Example 2.6a: LB+fwd

Load forwarding. In Example 2.6a the compiler might fuse the loads of x in lines 1 and 2, performing
only the first load and reusing the value in Line 2. sMRD includes a forwarding elaboration step that
reflects this possibility. Forwarding unifies the symbols of the fused loads, replacing all occurrences
of r2 with r1, and recording the pair (𝑟1, 𝑟2) in the forwarding context. After the elaboration we
have a set of justifications that matches Example 1.5a. This optimisation is not currently performed
in the concurrent context by either GCC or Clang, but it is valid under the specification of C++.

(𝑟1 = 1, {𝑟2}) ⊢(∅,∅) (3 :𝑊 𝑦 𝑟2)
fwd

{ (𝑟1 = 1, {𝑟1}) ⊢({(1,2) },∅) (3 :𝑊 𝑦 𝑟1)

Further elaborations provide: store forwarding, store-store forwarding, and write elision. These are
similar in nature to load forwarding and are explained in Appendix A.

1 int r1 = x;
2 if (r1 == 1) {
3 int rw1 = w;
4 z = rw1;
5 } else {
6 int rw2 = w;
7 z = rw2;
8 }

�������� 9 int ry = y;
10 x = ry;

Example 2.7a: Lift

1 int r1 = x;
2 if (r1 == 1) {
3 int rw1 = w;
4 int ry = y;
5 z = rw1;
6 } else {
7 int rw2 = w;
8 z = rw2;
9 }

�������� 10 int ry = y;
11 x = ry;

Example 2.7b: Lift

Lifting. We will now explore the matching of branch bodies and the hoisting of their events. In
Example 2.7a, regardless of the value read into r1 the constraints on the value read from w are
equivalent. The compiler might recognise this symmetry and rewrite rw1 to rw2 (or vice versa)
to produce equivalent branch bodies and then hoist above the condition. This optimisation is
performed by both GCC and Clang.
The Lifting elaboration applies to justifications of writes with equivalent locations and values:

here (𝑟1 = 1, {3}) ⊢ (4 :𝑊 𝑧 𝑟𝑤1) and (𝑟1 ≠ 1, {6}) ⊢ (7 :𝑊 𝑧 𝑟𝑤2). Lifting adds justifications for
each write with a predicate formed of the disjunction of the predicates of the original justifications.
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In this example, the resulting justifications are independent, and the relaxed behaviour is allowed.

(𝑟1 = 1, {3}) ⊢ (4 :𝑊 𝑧 𝑟𝑤1)
(𝑟1 ≠ 1, {6}) ⊢ (7 :𝑊 𝑧 𝑟𝑤2)

lift

{ (𝑟1 = 1 ∨ 𝑟1 ≠ 1, {3}) ⊢ (4 :𝑊 𝑧 𝑟𝑤1)
(𝑟1 = 1 ∨ 𝑟1 ≠ 1, {6}) ⊢ (7 :𝑊 𝑧 𝑟𝑤2) {

(⊤, {3}) ⊢ (4 :𝑊 𝑧 𝑟𝑤1)
(⊤, {6}) ⊢ (7 :𝑊 𝑧 𝑟𝑤2)

Example 2.7b introduces a read on Line 4. This read has no impact on the justification of the write
of z in that branch, lifting still applies, and the relaxed outcome is allowed.

There has been discussion around whether a semantic dependency relation can describe global
analysis and load introduction. This is best demonstrated in the following example, presented by
Lahav at the Future of Weak Memory (FoWM) workshop [20].

1 int a = X;
2 if (a == 1) {
3 Y = a;
4 print ("foo");
5 } else {
6 int b = Z;
7 Y = b;
8 }

�������� 9 int r = Y;
10 X = r;

�������� 11 Z = 1;

Example 2.8a: Lahav - FoWM’24

Example 2.8a has three threads: the first thread prints foo if we read 1 from X, this sets up the
first half of our LB shape. The second thread sets up the second side of the LB shape. Finally, the
third writes a 1 to Z. It has been argued that printing foo should be an allowed outcome [20]. A
chain of optimisations to thread 1 of this program under Clang could in theory permit printing
foo:

(opt1) introduce a redundant load of Z;
(opt2) introduce a branch on the result of that load;
(opt3) forward the result of the load into the branch;
(opt4) and finally hoist an invariant store.
The examples below are annotated with each of these steps.

1 c = Z; // opt1
2 int a = X;
3 if (a == 1) {
4 Y = a;
5 print ("foo");
6 } else {
7 int b = Z;
8 Y = b;
9 }

Example 2.8b: Lahav - FoWM’24

{

1 c = Z;
2 if (c == 1) { // opt2
3 int a = X;
4 if (a == 1) {
5 Y = a;
6 print ("foo");
7 } else {
8 int b = Z;
9 Y = b;

10 }
11 } else { . . . }

Example 2.8c: Lahav - FoWM’24

{

1 c = Z;
2 if (c == 1) {
3 int a = X;
4 if (a == 1) {
5 Y = 1; // opt3
6 print ("foo");
7 } else {
8 int b = 1; // opt3
9 Y = 1;

10 }
11 } else { . . . }

Example 2.8d: Lahav - FoWM’24

{

1 c = Z;
2 if (c == 1) {
3 Y = 1; // opt4
4 int a = X;
5 if (a == 1) {
6 print ("foo");
7 }
8 } else { . . . }

Example 2.8e: Lahav - FoWM’24
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When we finish these optimisations and reach the transformed program in Example 2.8e, we can
see that composing this thread with Threads 2 and 3 of the original program in Example 2.8a can
allow the program to print foo. In practice, we cannot observe this optimisation with any compiler
we tried including Clang.

The first step of this chain of optimisations, load introduction opt1, is contentious, and it
is contentious whether Z is atomic or non-atomic. In both cases, load introduction can allow
behaviours forbidden by the C/C++ semantics [34]. There is a note in the C++ specification to this
effect [13, [intro.races]]. We are of the opinion that unconstrained load introduction should be
forbidden.
Even so, we consider some forms of load introduction to be benign, and we recognise that

implementations do perform benign load introduction. Consider the transformation demonstrated
below.

1 int r1 = 0;
2 for (int i = 0; i < n; ++i) {
3 r1 += x;
4 }

Example 2.9a: Load introduction from load fusion

{ 1 int r1 = n ∗ x;

Example 2.9b: Load introduction from load fusion

This transformation has the effect of introducing a load of x in the case that n = 0. However, even
though a new load has been performed in the n = 0 case, its value is nullified by the multiplication
by zero. In the n = 0 case, there is an irrelevant load introduction, and in the n != 0 case there is a
load fusion. This distinction makes this introduction tantamount to a hoist of a load rather than an
introduction. It is the use of the hoisted load that would be folly, but that is neatly avoided here.

Symbolic MRD forbids unconstrained load introduction for two reasons. Firstly, and most simply,
the introduction of new events is not possible in the elaboration mechanism. Secondly, one might
attempt to use strengthening to introduce a dependency from the load of Z on Line 6, to the store
of Y on Line 3. This is also not possible, because the read is not available in an execution where the
store on Line 3 is present.

3 Symbolic MRDer: Decidable Automatic Evaluation
As with any complex model of a programming language, hand evaluation is error-prone and
time-consuming. We have built a tool, Symbolic MRDer, to automatically evaluate programs under
the sMRD model. This has been co-developed with the mathematical definition of the semantics,
helping us to simplify rules and ensure that modifications have not introduced regressions. Tooling
is essential to validate modelling choices and to help build confidence that a model adequately
handles litmus tests from the literature. Indeed, developing memory models alongside tooling is now
a well trodden practice. Several other thin-air free semantics have received this same treatment [10,
17, 23, 28] and tool development is completely typical for axiomatic semantics [3, 7, 11, 24, 35].

Symbolic MRDer takes programs as input and allows us to configure parameters for the test.
Expected behaviour is defined in an assertion, extrinsic choices can be specified, and consistency is
selected between RC11 [21] and IMM [30] modified to use our an acyclic(dp∪≤∪ rf) axiom instead
of the typical acyclic(⊑ ∪ rf) axiom. Symbolic MRDer returns program behaviour as undefined,
or if defined, as a set of executions, and it indicates if the assertion on expected behaviour is met.
Symbolic MRDer presents these executions graphically, printing event structures, dependencies,
and allowing interrogation of justifications. It is written in JavaScript and runs entirely within a
web browser, using Z3 via WebAssembly [12].

The semantics is declarative, producing a set of justifications, generating executions from these,
and then filtering to the allowed executions. In practice, the naïve generation of executions produces
an intractably large set, so Symbolic MRDer filters this set eagerly. Predicates in justifications
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are maintained in conjunctive normal form, splitting disjunctions into separate justifications.
Unsatisfiable justifications are removed, and so are those that are strictly stronger than others.
The simultaneous development of the tool and the semantics led to semantic choices in favour

of tool performance. In fact, we have established that the semantics is decidable (see Appendix G).

3.1 Evaluation
Symbolic MRDer evaluates a suite of 173 litmus tests, drawn from literature discussing the spec-
ification of C/C++ [34] and Java [31], on the thin-air problem [6, 8, 16, 19, 29, 33], and on weak
memory [21, 30, 32]. Each test probes one memory behaviour, specifying the expectation for C++
in its assertion. The run-time is orders of magnitude faster than other thin-air free semantic model
checkers: the whole test suite is completed in less than two minutes on an M2 MacBook Pro.
Similar tools for other thin-air free models take many minutes to hours to complete a subset of
the test suite [17, 23, 28]. Symbolic MRDer provides the desired behaviour in all test cases, except
where open questions of thread inlining and optimisations using global analysis leave the desired
behaviour ambiguous. Whilst several of our litmus tests are larger than previous models could
reasonably evaluate, they are still small relative to real codebases. Finding a way to scale this sort
of analysis is left to future work.

4 Formal Model
We introduce Symbolic MRD by modelling the following language. Registers, R, are ranged over by
𝑟1, 𝑟2, . . . and global variables, L, are ranged over by x, y, z all of which are disjoint: x ≠ y, y ≠ z,
and x ≠ z. Memory orderings, 𝑜 ∈ {𝑟𝑙𝑥, 𝑟𝑒𝑙, 𝑎𝑐𝑞, 𝑠𝑐}, are used to annotate fences, loads, and stores
(following C/C++). Expressions, E, are made up of registers, values, unary and binary operators,
and we use 𝜀 to denote an expression.

Definition 4.1. (Grammar).
𝑃 ::= skip | 𝑃1; 𝑃2 | 𝑃1 ∥ 𝑃2 | if (𝜀) {𝑃1} else {𝑃2} | while (𝜀) {𝑃}
| 𝑟𝑖 := 𝜀 | 𝑟𝑖 :=𝑜 𝑥 | 𝑥 :=𝑜 𝜀 | 𝑟𝑖 := &𝜀 | 𝑟𝑖 :=𝑜 *𝜀 | *𝜀1 :=𝑜 𝜀2
| fence𝑜 | 𝑟𝑖 := fadd𝑜𝑟 ,𝑜𝑤 (𝑙, 𝜀) | 𝑟𝑖 := cas𝑜𝑟 ,𝑜𝑤 (𝑙, 𝜀1, 𝜀2)
| 𝑟𝑖 := malloc(𝜀) | free(𝑟𝑖 )

Programs will be interpreted into event structures.

Definition 4.2. A symbolic event structure is a tuple (E, ⊑, #, ⊑rmw,⋎) where
(a) E is a set of labelled events.
(b) Program order over events, ⊑, mirrors the syntactic order of the source program.
(c) Conflict, #, denotes events that cannot both appear in a single execution, chiefly events that

occur in opposing branches of control flow.
(d) Atomicity, ⊑rmw, is a subset of program order that will exclude events from intervening on

read-modify-write operations.
(e) Value restriction, ⋎, is a function from events to boolean expressions, tracking constraints on

symbolic values gathered through control flow choices.

An event is one of the following:
▶ a write with order 𝑜 ,𝑊𝑜 𝑥 𝜀, where 𝑥 and 𝜀 are expressions for the location and value written;
▶ a read with order 𝑜 , 𝑅𝑜 𝑥 𝑠 , where 𝑥 is an expression for the location read, and 𝑠 is a symbol,

introduced by the read, representing the read value;
▶ a memory fence with order 𝑜 , 𝐹𝑜 ;
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▶ a branch, [𝜀], where 𝜀 is the expression that we branch upon;
▶ a memory allocation, 𝐴𝑙𝑙𝑜𝑐 𝑠 𝜀, where 𝜀 is the size of the allocation, and 𝑠 is a symbol,

introduced by the allocation disjoint from all 𝑙 ∈ L, representing the pointer to the allocated
region; or

▶ a memory reclamation, 𝐹𝑟𝑒𝑒 𝜀, where 𝜀 is the location freed.
An event, 𝑒 , is associated with a unique label, 𝑙 , denoted (𝑙 : 𝑒). Several maximal subsets are

defined on E:W, R, F , B,A, C – the sets of all writes, reads, fences, branches, memory allocations,
and memory reclamations, respectively. We define functions to extract information from events:
𝑙𝑜𝑐 to extract the location, 𝑣𝑎𝑙 to extract the value, and 𝑜𝑟𝑑𝑒𝑟 to extract the memory ordering. The
origin of a symbol, 𝑂 (𝛼), is the unique event 𝑒 that introduces the symbol. Origin is raised to sets
of symbols and, syntactically, to expressions.

4.1 Expression Interpretation
Our expressions are made up of symbols, values, and abstract unary and binary operators. We
instantiate arithmetic and comparison operators ranging over integers, booleans, and pointer
values. We provide the formal expression syntax in Appendix D. Function syms(𝜀) extracts the set
of symbols used in the expression 𝜀.
The expression interpretation function, J𝜀K𝑓 , takes a map from symbols to expressions called

an environment, 𝑓 , and returns an expression. This acts as an eager partial evaluation for the
expressions. We define semantic equality of expressions, ≡, and predicate-restricted semantic
equality, ≡𝑃 :

(𝜀1 ≡ 𝜀2) ≜ ∀𝑓 . J𝜀1K𝑓 , J𝜀2K𝑓 ∈ V ⇒ J𝜀1K𝑓 = J𝜀2K𝑓 (𝜀1 ≡𝑃 𝜀2) ≜ (𝑃 ⇒ 𝜀1 = 𝜀2) ≡ ⊤

Semantic equality allows us to declare that the expression 𝛼 = 1 ∧ ⊥ is equal to ⊥ regardless of
environment, thus ( (𝛼 = 1 ∧ ⊥) ∨ 𝑃 ) ≡ (⊥ ∨ 𝑃) ≡ 𝑃 .

4.2 Building Symbolic Event Structures
For program 𝑃 , ⟨𝑃⟩𝑛 𝜌 𝜅 𝜑 , is its semantic interpretation. Parameter 𝑛 is a step counter used to
ensure termination, 𝜌 is an environment, mapping register symbols to expressions, 𝜅 is a function
from environments to event structures, used as a continuation, and 𝜑 a predicate summarising the
control flow leading to the current statement. 𝜅∅ is a function from any environment to the empty
event structure.

Sequencing. To interpret 𝑝; 𝑃 , we first interpret 𝑝 into an event, as described below, and then
compose that with the event structure that results from interpreting 𝑃 . 2 3

▶ 𝑟𝑖 := 𝜀 – updates the value of a register.
▶ 𝑟𝑖 :=𝑜 𝑥 – loads a value from a global variable, generating a read event.
▶ 𝑥 :=𝑜 𝜀 – stores an expression into a global variable, generating a write event.
▶ 𝑟𝑖 := &𝑥 – loads the address of global variable 𝑥 into 𝑟𝑖 . This does not generate an event. The

address of all global variables are assumed to be distinct.
▶ 𝑟𝑖 :=𝑜 *𝜀 – loads a value from a pointer, generating a read event.
▶ *𝜀1 :=𝑜 𝜀2 – stores an expression into a pointer, generating a write event.
▶ 𝑟1 := fadd𝑜𝑟 ,𝑜𝑤 (𝑙, 𝜀) – performs an atomic fetch and add, generating a read event and write

event.

2cas is the strong variant, with success and failure orderings being equal, an extension to asymmetric ordering is presented
in Appendix E.
3Any C++ fetch_key function can be constructed in a similar way to fadd (fetch_add).
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▶ 𝑟1 := cas𝑜𝑟 ,𝑜𝑤 (𝑙, 𝜀1, 𝜀2) – performs an atomic compare exchange, generating a read, a branch,
and a write.

▶ fence𝑜 – inserts a memory fence, generating a fence event.
▶ 𝑟𝑖 := malloc(𝜀) – allocates a block of memory of size 𝜀, generating an alloc event.
▶ free(𝑟𝑖 ) – frees a block of memory, generating a free event.

Prefixing, •, composes an event 𝑒 with an event structure.

Definition 4.3. (Event structure prefix). 𝑒 [𝜑] • (E, ⊑, #, ⊑rmw,⋎) ≜ (E′, ⊑′, #, ⊑rmw,⋎′) where,
E′ = {𝑒} ∪ E ⊑′ = ⊑ ∪ ({𝑒} × E) ⋎′ = ⋎[𝑒 ↦→ 𝜑]

We define the semantic interpretation of commands:

⟨𝑟𝑖 := 𝜀⟩𝑛 𝜌 𝜅 𝜑 ≜ 𝜅 (𝜌 [𝑟𝑖 ↦→ J𝜀K𝜌 ])
⟨𝑟𝑖 :=𝑜 𝑥⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 : 𝑅𝑜 𝑥 𝛼) [𝜑] • 𝜅 (𝜌 [𝑟𝑖 ↦→ 𝛼])
⟨𝑥 :=𝑜 𝜀⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 :𝑊𝑜 𝑥 J𝜀K𝜌 ) [𝜑] • 𝜅 (𝜌)
⟨𝑟𝑖 := &𝑥⟩𝑛 𝜌 𝜅 𝜑 ≜ 𝜅 (𝜌 [𝑟𝑖 ↦→ 𝑥])
⟨𝑟𝑖 :=𝑜 *𝜀⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 : 𝑅𝑜 J𝜀K𝜌 𝛼) [𝜑] • 𝜅 (𝜌 [𝑟𝑖 ↦→ 𝛼])
⟨*𝜀1 :=𝑜 𝜀2⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 :𝑊𝑜 J𝜀1K𝜌 J𝜀2K𝜌 ) [𝜑] • 𝜅 (𝜌)

⟨𝑟𝑖 := fadd𝑜𝑟 ,𝑜𝑤 (𝑥, 𝜀)⟩𝑛 𝜌 𝜅 𝜑 ≜ 𝑟𝑚𝑤 ( (𝑒1 : 𝑅𝑜𝑟 𝑥 𝛼) • (𝑒2 :𝑊𝑜𝑤 𝑥 (𝛼 + J𝜀K𝜌 ))•
𝜅 (𝜌 [𝑟𝑖 ↦→ 𝛼]), 𝑒1, 𝑒2 )

⟨𝑟𝑖 := cas𝑜𝑟 ,𝑜𝑤 (𝑥, 𝜀1, 𝜀2)⟩𝑛 𝜌 𝜅 𝜑 ≜ 𝑟𝑚𝑤 ( (𝑒1 : 𝑅𝑜𝑟 𝑥 𝛼) • (𝑒2 : [𝛼 = J𝜀1K𝜌 ]) •
((𝑒3 :𝑊𝑜𝑤 𝑥 𝜀2) • 𝜅 (𝜌 [𝑟𝑖 ↦→ 1])) + 𝜅 (𝜌 [𝑟𝑖 ↦→ 0]), 𝑒1, 𝑒3)

⟨fence𝑜⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 : 𝐹𝑜 ) • 𝜅 (𝜌)
⟨𝑟𝑖 := malloc(𝜀)⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 : 𝐴𝑙𝑙𝑜𝑐 𝛼 J𝜀K𝜌 ) • 𝜅 (𝜌 [𝑟𝑖 ↦→ 𝛼])

⟨free(𝑟𝑖 )⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 : 𝐹𝑟𝑒𝑒 J𝑟𝑖K𝜌 ) • 𝜅 (𝜌)
We extend ⊑rmw in cas and fadd: 𝑟𝑚𝑤 ((E, ⊑, #, ⊑rmw,⋎), 𝑟 ,𝑤) ≜ (E, ⊑, #, ⊑rmw ∪ {(𝑟,𝑤)},⋎).
Interpreting if (𝑏) {𝑃1} else {𝑃2} entails interpreting each branch: 𝑃1 in a context where 𝑏

holds, and 𝑃2 in a context where ¬𝑏 holds. The guarantees provided by 𝑏 are reflected in a generated
branch event 𝑒 with condition J𝑏K𝜌 . while (𝑏) {𝑃} is interpreted as iteration of if, decrementing
the step counter each time.

⟨if (𝑏) {𝑃1} else {𝑃2}⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 : [J𝑏K𝜌 ]) •
(
⟨𝑃1⟩𝑛 𝜌 𝜅 (𝜑∧J𝑏K𝜌 ) + ⟨𝑃2⟩𝑛 𝜌 𝜅 (𝜑∧¬J𝑏K𝜌 )

)
⟨while (𝑏) {𝑃}⟩𝑛 𝜌 𝜅 𝜑 ≜ ⟨if (𝑏) {𝑃 ; while (𝑏) {𝑃}} else {skip}⟩𝑛−1 𝜌 𝜅 𝜑

Coproduct, +, places two structures in conflict, extending the # relation.

Definition 4.4. (Coproduct).

(E1, ⊑1, #1, ⊑rmw
1 ,⋎1) + (E2, ⊑2, #2, ⊑rmw

2 ,⋎2) ≜
(E1 ∪ E2, ⊑1 ∪ ⊑2, #1 ∪ #2 ∪ (E1 × E2), ⊑rmw

1 ∪ ⊑rmw
2 ,⋎1 ∪ ⋎2)

For parallel composition, written 𝑃1 ∥ 𝑃2, we interpret ⟨𝑃1⟩𝑛 𝜌 𝜅 𝜑 and ⟨𝑃2⟩𝑛 𝜌 𝜅 𝜑 separately and
then combine the resulting structures with the × operator.

Definition 4.5. (Product).

(E1, ⊑1, #1, ⊑rmw
1 ,⋎1) × (E2, ⊑2, #2, ⊑rmw

2 ,⋎2) ≜ (E1 ∪ E2, ⊑1 ∪ ⊑2, #1 ∪ #2, ⊑rmw
1 ∪ ⊑rmw

2 ,⋎1 ∪ ⋎2)
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4.3 Justification
The justification of a write 𝑤 , (𝑃, 𝐷) ⊢𝛿 𝑤 , captures the circumstances and requirements for the
write to occur. We say a write𝑤 is independent if (⊤, ∅) ⊢𝛿 𝑤 . And for a justification, 𝑗 , we define:
𝑗𝑃 , 𝑗𝐷 , 𝑗𝛿 , and 𝑗𝑤 to extract the respective components. From an event structure with write set W,
we derive a set of initial justifications, J0, and perform elaborations,{, to generate the set of all
justifications, J4.

J0 = {(⋎(𝑤), syms(𝑙𝑜𝑐 (𝑤)) ∪ syms(𝑣𝑎𝑙 (𝑤))) ⊢(∅,∅) 𝑤 | ∀𝑤 ∈ W . ⋎ (𝑤) ̸≡⊥}

J𝑖+1 = J𝑖 ∪ { 𝑗 | ∃ 𝑗1, 𝑗2 ∈ J𝑖 . 𝑗𝑃 ̸≡⊥ ∧ ( 𝑗1, 𝑗2 { 𝑗)} J =
∞⋃
𝑖=0

J𝑖

Definition 4.6. (Elaboration). Six predicates capture the guards and transformations of the possible
elaborations, 𝐺va,𝐺str,𝐺fwd,𝐺we,𝐺lift,𝐺weak and are defined in §4.7.

𝑗1, 𝑗2 { 𝑗 ≜ ∃ 𝐺 ∈ G. 𝐺 ( 𝑗1, 𝑗2, 𝑗) G ≜ {𝐺va,𝐺str,𝐺fwd,𝐺we,𝐺lift,𝐺weak}

We define 𝑋\𝑆 as the restriction of 𝑋 to all (𝑎, 𝑏) ∈ 𝑋 such that both 𝑎 and 𝑏 are not in 𝑆 . 𝐴;𝐵 is
the left composition of relations binding tighter than ∪.

4.4 Preserved Program Order
Definition 4.7. (Forwarding Context). A justification’s forwarding context, 𝛿 = (𝑓 ,𝑤𝑒), captures

the memory accesses that have been fused during elaboration (§4.13).𝜓𝛿 are the constraints imposed
by the forwarding context and 𝑟𝑒𝑚𝑎𝑝𝛿 (𝑒) returns the event that 𝛿 fuses 𝑒 into.

𝜓 (𝑓 ,𝑤𝑒 ) ≜
∧

(𝑒1,𝑒2 ) ∈ 𝑓
𝑣𝑎𝑙 (𝑒1) = 𝑣𝑎𝑙 (𝑒2)

𝑟𝑒𝑚𝑎𝑝 (𝑓 ,𝑤𝑒 ) (𝑒) ≜
{
𝑟𝑒𝑚𝑎𝑝 (𝑓 ,𝑤𝑒 ) (𝑒1) where (𝑒1, 𝑒) ∈ (𝑓 ∪𝑤𝑒)
𝑒 otherwise

Preserved program order, ≤, captures ordering constraints and is composed of ≤𝑠𝑦𝑛𝑐 , ≤𝑟𝑚𝑤 , and
≤𝑎𝑙𝑖𝑎𝑠 . ≤𝑠𝑦𝑛𝑐 captures ordering imposed by synchronisation, ≤𝑟𝑚𝑤 extends synchronisation through
atomic read-modify-write events, and ≤𝑎𝑙𝑖𝑎𝑠 captures ordering imposed by potential aliasing.

≤𝑃
𝛿
remaps preserved program order under the forwarding context 𝛿 and predicate 𝑃 . 𝑝𝑟𝑒𝑑𝛿 (𝑒, 𝑃)

produces the set of immediate predecessors of 𝑒 in the remapped ≤ relation.

Definition 4.8. (Preserved Program Order).

≤𝑠𝑦𝑛𝑐 ≜ (⊑;W|?
𝑟𝑒𝑙/𝑠𝑐 ∪ R|?

𝑎𝑐𝑞/𝑠𝑐 ;⊑ ∪ ⊑;F |?𝑠𝑐 ;⊑ ∪ ⊑;F |?
𝑟𝑒𝑙

;⊑\R ∪ ⊑\W ;F |?𝑎𝑐𝑞 ;⊑)\F∪B
≤𝑟𝑚𝑤 ≜ ≤𝑠𝑦𝑛𝑐 ;⊑rmw−1 ∪ ⊑rmw−1; ≤𝑠𝑦𝑛𝑐

≤𝑃
𝑎𝑙𝑖𝑎𝑠

≜ {(𝑒1, 𝑒2) ∈ ⊑ | ∃𝑓 . (J𝑃 ∧ 𝑙𝑜𝑐 (𝑒1) = 𝑙𝑜𝑐 (𝑒2)K𝑓 ) ≡ ⊤}
≤𝑃
𝛿
≜ 𝑟𝑒𝑚𝑎𝑝𝛿 (≤𝑠𝑦𝑛𝑐 ∪ ≤𝑟𝑚𝑤 ∪ ≤𝑃

𝑎𝑙𝑖𝑎𝑠
) \ E?

𝑝𝑟𝑒𝑑𝛿 (𝑒, 𝑃) ≜ {𝑒′ | 𝑒′≤𝑒 ∧ �𝑒′′ .𝑒′≤𝑒′′≤𝑒} where ≤ = ≤𝑃∧𝜓𝛿

𝛿

4Under a finite value set, elaborations perform a search through a finite space in an indeterminate but finite number of
steps, so the calculation is decidable (see Appendix G).
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4.5 Freezing
Freezing converts justifications into dp edges: for justification (𝑃, 𝐷) ⊢𝛿 𝑤 , we take the origin of

symbols in 𝑃 and 𝐷 , and establish 𝑒
dp
−−→ 𝑤 for all events, 𝑒 , in the derived origin set. In addition,

freezing applies the forwarding context to preserved program order, and builds a constraint on rf
that ensures: events used in rf and dp are not elided; rf covers the reads in 𝐸; and both the branching
choices and the value and location equality implied by rf are satisfiable.

Definition 4.9. (Freeze). For justification set 𝐽 , freeze(𝐽 ) ≜ (𝐸, dp, ≤, 𝜆rf . 𝜑, 𝐽 ), where:

▶ 𝐸 is a maximal conflict free set of events.
▶ All justifications 𝑗 ∈ 𝐽 share the forwarding context 𝛿 , and † are the events elided by 𝛿 .
▶ All writes in 𝐸 \ † are uniquely justified.
▶ 𝜑rf enforces equivalence of the location and value of each write-read pair in rf.
▶ enforces disjointness of symbolic pointers introduced by allocation events if a free cannot

intervene (Appendix I).

dp ≜
⋃
𝑗∈ 𝐽

(𝑂 ( 𝑗𝑃 ) ∪𝑂 ( 𝑗𝐷 )) × {𝑤} 𝑃 ≜
∧
𝑗∈ 𝐽

𝑗𝑃 ∧𝜓𝛿 ≤ ≜
⋃
𝑗 ∈ 𝐽

≤ 𝑗𝑃
𝛿

∩ {𝑒 ∈ 𝐸 | 𝑒⊑? 𝑗𝑤}2

𝜑 ≜ † ∩ 𝜋1 (rf ∪ dp) = ∅ ∧ 𝐸 |R = 𝜋2 (rf) ∧ ∃𝑔.J𝑃 ∧ 𝜑rfK𝑔 = ⊤

4.6 Program Semantics
We define the semantics of program 𝑃 ,J𝑃K𝑛 , under step index 𝑛 in a series of steps. An event
structure, ⟨𝑃⟩𝑛 𝜌 𝜅∅ ⊤ = (E, ⊑, #, ⊑rmw,⋎), and set of elaborated justifications, J, are derived from 𝑃 .

A set of candidate executions, X, are derived from the event structure. Each execution is a tuple
(E𝑋 , rf𝑋 ,mo𝑋 , ⊑rmw

𝑋
, dp𝑋 , ≤𝑋 , 𝐽𝑋 ) where:

▶ E𝑋 is a maximal conflict-free subset of E.
▶ rf𝑋 is a reads-from relation, pairing writes with the reads that take their value.
▶ mo𝑋 , modification order, is a per-location total order over writes.
▶ ⊑rmw

𝑋
links the load and store of successful compare-and-swap and fetch-and-add operations.

▶ dp𝑋 is the semantic dependency relation, to be subsequently checked.
▶ ≤𝑋 is the preserved program order relation (4.8), again to be subsequently checked.
▶ 𝐽𝑋 is the justifying set, the justifications used to justify this execution.
We filter candidate executions to a set of complete executions, where for each 𝑋 : there is a 𝐽𝑋 ⊆ J

such that freeze(𝐽𝑋 ) = (E𝑋 , dp𝑋 , ≤𝑋 , 𝜑, 𝐽𝑋 ) and𝜑 (rf𝑋 ) holds. The semantics of the program, J𝑃K𝑛 , is
the subset of the complete executions that are coherent according to the RC11 axiomatic constraints,
excluding no-thin-air, and imposing that dp ∪ ≤ ∪ rf is acyclic.

There is a natural separation between the calculation of dp and the application of the axiomatic
memory model, here RC11; another axiomatic model might be used in its place. In extending the
language to dynamic memory we introduce a new class of undefined behaviour where programming
errors lead to use after free or use of uninitialised memory. Candidate definitions for these errors are
presented in Appendix H.

4.7 Elaborations
Value assignment. Value assignment allows us to remove dependencies for a write whenever we
can infer the value of a symbolic variable. For example, if (𝑤 :𝑊 𝑥 𝛼) appears under the branch
[𝛼 = 0], then we can swap the label of𝑤 to be𝑊 𝑥 0 and remove the data dependency on 𝛼 .
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Definition 4.10. (Value assignment).

𝐺va ( 𝑗1, 𝑗2, 𝑗) ≜ 𝑗1 = 𝑗2 ∧ 𝑗1 = (𝑃, 𝐷) ⊢𝛿 (𝑒 :𝑊𝑜 𝑥 𝜀) ∧ 𝑗 = (𝑃, 𝐷 ′) ⊢𝛿 (𝑒 :𝑊𝑜 𝑥
′ 𝜀′)

∧ 𝛼 ≡𝑃 𝑣 ∧ 𝑣 ∈ V

∧ 𝑥 ′ = J𝑥K[𝛼 ↦→ 𝑣 ] ∧ 𝜀′ = J𝜀K[𝛼 ↦→ 𝑣 ] ∧ 𝐷 ′ = syms(𝑥 ′) ∪ syms(𝜀′)

Strengthening. A control dependency, 𝑃 , can be strengthened by an arbitrary predicate, 𝑃 ′. We
restrict 𝑃 ′ to predicates where all symbols are visible to the justified write.

Definition 4.11. (Strengthening).

𝐺str ( 𝑗1, 𝑗2, 𝑗) ≜ 𝑗1 = 𝑗2 ∧ 𝑗1 = (𝑃, 𝐷) ⊢𝛿 𝑤 ∧ 𝑗 = (𝑃 ′, 𝐷) ⊢𝛿 𝑤
∧ 𝑆 = 𝑂 (𝑃 ′) \𝑂 (𝑃) ∧ 𝑟𝑒𝑚𝑎𝑝𝛿 (𝑆) = 𝑆 ∧ ∀𝑒 ∈ 𝑆. (𝑒 ⊑ 𝑤 ∨𝑤 ⊑ 𝑒) ∧𝑤≰𝑃

𝛿
𝑒

∧ 𝑃 ′ ⇒ (𝑃 ∧
∧
𝑒∈𝑆

⋎(𝑒))

Forwarding. The forwarding operation accommodates compiler optimisations that fuse same-

location memory accesses. For justification 𝑗 , forwarding,
F𝑗−→, and write elision,

WE𝑗−−−→, relate
memory accesses that can be fused under the constraints imposed by 𝑗 .

Definition 4.12. (Forwarding Relation).

𝑒1
F′𝑗−→ 𝑒2 ≜ 𝑗 = (𝑃, 𝐷) ⊢𝛿 𝑤 ∧ 𝑒1 ∈ 𝑝𝑟𝑒𝑑𝛿 (𝑒2, 𝑃) ∧ 𝑙𝑜𝑐 (𝑒1) ≡𝑃∧𝜓𝛿

𝑙𝑜𝑐 (𝑒2)

𝑒1
F𝑗−→ 𝑒2 ≜ 𝑒1

F′𝑗−→ 𝑒2 ∧ (𝑒1, 𝑒2) ∈ (W × R|𝑟𝑙𝑥 ∪W ×W|𝑟𝑙𝑥 ∪ R × R)

𝑒1
WE𝑗−−−→ 𝑒2 ≜ 𝑒1

F′𝑗−→ 𝑒2 ∧ (𝑒1, 𝑒2) ∈ (W ×W)

For justification 𝑗1, applying a forwarding, 𝑒1
F𝑗1−−→ 𝑒2, updates the justifying set and justifying

predicate, removing the dependencies of the forwarded event and adding those of the forwarding
event. A write elision simply records that an event is shadowed in the forwarding context.

Definition 4.13. (Forwarding).

𝐺fwd ( 𝑗1, 𝑗2, 𝑗) ≜ 𝑗1 = 𝑗2 ∧ 𝑗1 = (𝑃, 𝐷) ⊢(𝑓 ,𝑤𝑒 ) (𝑒 :𝑊𝑜 𝑥 𝜀) ∧ 𝑗 = (𝑃, 𝐷 ′) ⊢(𝑓 ∪(𝑒1,𝑒2 ),𝑤𝑒 ) (𝑒 :𝑊𝑜 𝑥
′ 𝜀′)

∧ 𝑒1
F𝑗1−−→ 𝑒2 ∧ 𝑒𝑛𝑣 = [𝑣𝑎𝑙 (𝑒2) ↦→ 𝑣𝑎𝑙 (𝑒1)]

∧ 𝑃 ′ = J𝑃K𝑒𝑛𝑣 ∧ 𝜀′ = J𝜀K𝑒𝑛𝑣 ∧ 𝑥 ′ = J𝑥K𝑒𝑛𝑣 ∧ 𝐷 ′ = syms(𝜀′) ∪ syms(𝑥 ′)

𝐺we ( 𝑗1, 𝑗2, 𝑗) ≜ 𝑗1 = 𝑗2 ∧ 𝑗1 = (𝑃, 𝐷) ⊢(𝑓 ,𝑤𝑒 ) 𝑤 ∧ 𝑗 = (𝑃, 𝐷) ⊢(𝑓 ,𝑤𝑒∪(𝑒2,𝑒1 ) ) 𝑤 ∧ 𝑒1
WE𝑗1−−−−→ 𝑒2

Lifting. Thus far, the rules of the model have only introduced dependencies, e.g. at conditional
branches, but if we have equivalent writes in each branch, then the write will happen regardless
of the condition, and there should be no dependency. Lifting is the crux of the model: it is the
mechanism that recognises when dependencies are false and removes them. In lifting, we will need
to establish equivalence of expressions in conflicting branches.

A relabelling, Λ, is a environment that maps symbols, one-to-one, from one branch into symbols
from a conflicting branch.
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Definition 4.14. (Relabel-Equivalence). Two expression-predicate pairs, 𝜀1 under 𝑃1 and 𝜀2 under
𝑃2, are relabel equivalent with relabelling Λ, and context 𝛿 , written 𝑃1 : 𝜀1

Λ,𝛿−−→ 𝑃2 : 𝜀2, if:

∃𝑒. (J𝑃1 ⇒ 𝜀1 = 𝑒KΛ ∧ (𝑃2 ⇒ 𝜀2 = 𝑒) ≡𝜓𝛿
⊤)

Raising to events, 𝑒1 under 𝑃1 and 𝑒2 under 𝑃2 are relabel equivalent, written 𝑃1 : 𝑒1
Λ,𝛿−−→ 𝑃2 : 𝑒2, if

the expressions and locations of the events are relabel equivalent:
𝑃1 : 𝑙𝑜𝑐 (𝑒1)

Λ,𝛿−−→ 𝑃2 : 𝑙𝑜𝑐 (𝑒2) ∧ 𝑃1 : 𝑣𝑎𝑙 (𝑒1)
Λ,𝛿−−→ 𝑃2 : 𝑣𝑎𝑙 (𝑒2) where (𝑒1, 𝑒2) ∈ (R2 ∪W2 ∪ A2)

𝑃1 : 𝑙𝑜𝑐 (𝑒1)
Λ,𝛿−−→ 𝑃2 : 𝑙𝑜𝑐 (𝑒2) where 𝑒1, 𝑒2 ∈ C

⊤ where 𝑒1, 𝑒2 ∈ F
⊥ otherwise

Definition 4.15. (Closed Relabel-Equivalence). We close relabel equivalence under preserved
program order to define closed relabel equivalence:

𝑃1 : 𝑒1
Λ,𝛿−−→

∗
𝑃2 : 𝑒2 ≜ 𝑃1 : 𝑒1

Λ,𝛿−−→ 𝑃2 : 𝑒 : 2
∧ ∅ = 𝑝𝑟𝑒𝑑𝛿 (𝑒1, 𝑃1) ⇔ ∅ = 𝑝𝑟𝑒𝑑𝛿 (𝑒2, 𝑃2)

∧ ∀𝑒′1 ∈ 𝑝𝑟𝑒𝑑𝛿 (𝑒1, 𝑃1), 𝑒′2 ∈ 𝑝𝑟𝑒𝑑𝛿 (𝑒2, 𝑃2). 𝑃1 : 𝑒′1
Λ,𝛿−−→

∗
𝑃2 : 𝑒′2

Definition 4.16. (Lifting). Lifting adds a new justification with the disjunction of control depen-
dencies from invariant stores on conflicting branches. It must check that there is a relabelling
matching up locations and values in each branch over the write, the data dependencies, and their
≤-predecessors.

𝐺lift ( 𝑗1, 𝑗2, 𝑗) ≜ 𝑗1 = (𝑃1, 𝐷1) ⊢𝛿 𝑤1 ∧ 𝑗2 = (𝑃2, 𝐷2) ⊢𝛿 𝑤2 ∧ 𝑗 = (J𝑃1KΛ ∨ 𝑃2, 𝐷2) ⊢𝛿 𝑤2

∧ 𝑃1 : 𝑤1
Λ,𝛿−−→

∗
𝑃2 : 𝑤2 ∧ J𝐷1KΛ = 𝐷2

∧ ∀𝑠 ∈ 𝐷1 . 𝑃1 : 𝑂 (𝑠) Λ,𝛿−−→
∗
𝑃2 : 𝑂 (J𝑠KΛ)

Optimisations may rely on extrinsic value constraints that are described at the level of the whole
program. To account for this we introduce weakening, and extend the semantic judgement to accept
an extrinsic program-wide guarantee Ω: J𝑃K𝑛 Ω .

Definition 4.17. (Weakening).

𝐺weak ( 𝑗1, 𝑗2, 𝑗) ≜ 𝑗1 = 𝑗2 ∧ 𝑗1 = (𝑃 ′ ∧ 𝑃, 𝐷) ⊢𝛿 𝑤 ∧ 𝑗 = (𝑃 ′, 𝐷) ⊢𝛿 𝑤 ∧ Ω ⇒ 𝑃

4.8 Derived Program-Wide Guarantees
The semantics above is sufficient to describe the behaviour of an optimising compiler with any
program-wide invariant, but it must be specified as an extrinsic constraint. Some whole-program
invariants might be derived by considering the behaviours of the program – for example an implicit
constraint on the value of a variable. We provide an extended variant of the semantics that closes
over consistent invariants.

Definition 4.18. (Extended semantics). For program-wide guarantee Ω0, L𝑃M𝑛 Ω0 is the smallest
set where:
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(a) J𝑃K𝑛 Ω0 ∈ L𝑃M𝑛 Ω0

(b) Given J𝑃K𝑛 Ω ∈ L𝑃M𝑛 Ω0 , if
(a) Ω′ holds over all executions in J𝑃K𝑛 Ω , and
(b) Ω ∧ Ω′ holds over all executions in J𝑃K𝑛 (Ω∧Ω′ ) ,
then J𝑃K𝑛 (Ω∧Ω′ ) ∈ L𝑃M𝑛 Ω0 .

The corpus of litmus tests (§3) relies primarily on extrinsic program-wide guarantees and simple
value-range constraints that can also be expressed extrinsically. The extended semantics is bounded
above by the behaviour defined by ISO C, which is equivalent to removing all dp edges by setting a
false program-wide guarantee: J𝑃K𝑛 ⊥. Programmers have an expectation that optimisations will
be reasonable, and we believe this will require further restriction of derived guarantees, and an
extension of the corpus of litmus tests to explore this boundary.

5 Meta-Theoretical Results
Established C/C++ compiler mappings correctly implement Symbolic MRD. We refer to the RC11
model [21], J𝑃KRC11. Prior work shows that the established mappings, from RC11 memory accesses
to target hardware accesses, are sound [30]: J𝑃KRC11 ⊇ Jcomp(𝑃)KIMM.

Lemma 5.1 (Symbolic MRD is implementable over major hardware targets).
J𝑃K𝑛 ⊤ ⊇ J𝑃KRC11 ⊇ Jcomp(𝑃)KIMM

Proof sketch. For a given execution in J𝑃KRC11, we must find a matching execution of J𝑃K𝑛 ⊤.
We observe that we can always construct a dp such that (dp ∪ ≤) ⊆ ⊑ by freezing the initial
justification of each write, so acyclic(⊑ ∪ rf) =⇒ acyclic(dp ∪ ≤ ∪ rf), as required. □

Symbolic MRD provides DRF-SC. The DRF-SC property guarantees sequentially consistent (SC)
behaviour to programs that do not exhibit a race under SC execution [21]. We denote the set of all
racy executions as 𝐷𝑅. A sketch of the structure of a proof of DRF-SC is now provided.

(J𝑃KSC ∩ 𝐷𝑅 = ∅) ⇒ (J𝑃KSC = J𝑃K𝑛 ⊤)

We follow the structure of the proof of DRF-SC for RC11. We adopt the same characteristic of a
racing pair in the relaxed memory model: same-location, at least one write, unordered by happens-
before. The work of the proof it to find the first race in some order, to remove that race, to show
that the now race-free fragment of the execution is SC, and then add back the race and complete a
racy SC execution.
RC11 uses a linearisation of ⊑ ∪ rf to order the events of an execution, but in Symbolic MRD,

this can be cyclic. We take a linearisation of dp ∪ ≤ ∪ rf as our order and find the first race in this.
Races are over a pair of events, and we remove the second event in the linearisation to remove the
race. Without any races, the prefix behaves according to the SC axioms, following the RC11 proof.
Now, we must add back the event and establish that there was a race. If this event was not part of a
cycle in ⊑ ∪ rf, then this is a valid RC11 prefix, and we follow the steps of the original proof. If it
was part of a ⊑ ∪ rf cycle, then the event to be added must be a write,𝑤 , and the ⊑ preceding event
in the cycle must be a read, 𝑟 that is not ordered by dp ∪ ≤. We must find a racy write,𝑤 ′ that can
be executed as the next step of an SC execution.

The absence of a dependency from 𝑟 to𝑤 is used to derive the write𝑤 ′. Consider the justification
of𝑤 . If there is an initial justification that is independent of 𝑟 , then the write can be executed under
SC. If 𝑤 has a justification resulting from a sequence of elaborations, then there is a lifting step
that removes 𝑟 from its dependencies, and this step requires the write to be invariant under read 𝑟 ,
so there is a label-similar event that races for every value read, and can be executed under SC. We
add this event to the prefix and complete under SC execution to produce our racy SC execution.
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6 Related Work
Symbolic MRD is not the first thin-air free memory model, but it is first to correctly permit the
optimisation demonstrated in Example 1.1a, without granting it undefined behaviour. Symbolic
MRD builds on prior work by Paviotti et al., where values were expressed concretely, inflating the
representation of program behaviour. More recent work by Jeffrey et al. describes a denotational
model with strong compositionality properties. Their model uses predicates and predicate trans-
formers to keep track of the conditions required to observe a given event. When those conditions
are a tautology the dp is removed. This is analogous to our independent writes (4.3). These mod-
els also project a dp relation that can be used in the C/C++ concurrency model. The Promising
Semantics [19] uses an operational model of promises and certification to rule out most thin-air
values [17].

MRD and Symbolic MRD are not the first works to use event structures to encode the overlaid
divergent executions of programs in a thin-air free memory model. Pichon-Pharabod and Sewell,
and separately Chakraborty and Vafeiadis use event structures in their work as the state in an
operational semantics. Jeffrey and Riely used event structures as the state in a game-semantic
exploration to find the writes which are always reachable.

Some memory models forbid thin-air behaviour by ruling out common compiler optimisations.
There are several tools for such models, and these have been very important in the development,
evaluation, and use of language and hardware models. CPPMEM allowed academics to present
work on the C/C++ memory model to industrial practitioners [7]. RC11 [21] and hardware models
like ARM [2], can be evaluated by the Herd suite of tools. Herd has been instrumental in testing
axiomatic models and automatically generating litmus tests to validate against implementations [3].

Tools for thin-air free models have relied on specialised solver techniques to make the problem
of recognising false dependencies tractable [10]. Later work used brute-force solving in OCaml [28].
Z3 has enhanced performance of models with small proof burdens in their semantics [17]. Tools
for the full promising semantics look difficult to implement; results by Lee et al. show that only the
release-acquire fragment of Promising 2.0 [1] is decidable.

Work on C dynamic allocation semantics has yielded rich tooling support as well. The Cerberus
and Cerberus-BMC projects allow programmers to explore their programs’ pointer semantics, in
particular to uncover some unexpected subtleties of undefined behaviour [22, 27]. This work has
been extended to support and explore choices of provenance models like VIP and PNVI [26].

There has been discussion about whether processor vendors should restrict concurrent memory
accesses to forbid load-store reordering. If the compiler were similarly restricted, this could rule
out thin-air values without the need to calculate a dp relation, and it would make the machinery of
Symbolic MRD unnecessary. A statement from ARM stresses the performance cost of this approach
and rules it out [15].

7 Proposed C++ Standard Changes
The development of sMRD has been supported by an extensive conversation at Workgroup 21
(WG21, C++) of the ISO. Much of the discussion is recorded in white papers. Notable papers include
N4136 [5], an early record of discussion on the thin-air problem; N4323 [18], where the notion
of semantic dependency was first introduced – without a definition; P3064R2 [34], listing the
desiderata for semantic dependency as a set of litmus tests, and P1780R2 [4], describing a change
to the standard to include the semantic dependency relation.

P1780R2 proposes the minimal change to the standard to incorporate semantic dependency, and
defers its explicit definition to an external technical report (a ‘TR’ in the ISO parlance). This approach
allows the TR to point initially to P3064R2, constraining semantic dependency by example. Later,
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the TR can be replaced with a specification embodying Symbolic MRD, developed in conversation
with the ISO. Finally, Symbolic MRD might be introduced into the standard. The initial change to
the standard, from P1780R2, is presented in Appendix J.

Amove to implementation-defined behaviour, and less of it. The ISO standard constrains the semantics
of C++ with imperative language like “must”, but it also features non-normative text that imposes
no constraints, using language like “should” and text contained in note brackets. Some constraints
are left as implementation defined, where there is freedom in some choice in the semantics that
may vary across compilers and their configurations.
The text that forbids thin-air cycles is entirely non-normative in the current standard [13,

atomics.order]. Appendix J introduces semantic dependency and forbids cycles in dp∪ rf, but leaves
dp implementation defined. If an implementation defines dp as empty, then this is equivalent to the
existing standard (no cycles are constructed), but this choice makes it impossible to reason about
code [6]. To enable reasoning, the compiler must make an implementation-defined choice to specify
a non-empty dp, invoking a definition like sMRD. With this change alone, we have converted a
hole in the standard made up of non-normative text, into an implementation-defined hole, albeit a
large one. Even so, this may be a sensible stepping stone towards a thin-air fix.
If the standard adopted sMRD, then it would shrink the part of the specification that is imple-

mentation defined, and provide a more ergonomic interface to making compiler defined choices. A
compiler could specify extrinsic choices like alignment of pointers (Example 1.3a), memory layout
choices, or integer limits, instead of having to invoke the larger sMRD definition, or an equivalent.
The inductive definition of justification (§4.3) is monotonic in extrinsic choice: enforcing more

extrinsic choices can never forbid behaviours, it only allows more. At the limit, the compiler can
make an extrinsic choice, J𝑃K𝑛 ⊥, with behaviour matching the existing standard.
With sMRD and a suitable compiler-defined extrinsic choice, one can reason about programs

that include ⊑ ∪ rf cycles, where in the existing C++ specification, one cannot [6].

Avoiding complexity. There is no question that sMRD is intricate, but there is a lot to keep track
of: all of the components of justification are necessary to model the optimisations we see above
real compilers and hardware. Regular programmers can sidestep all of this complexity with simple
guidelines, e.g. avoiding the relaxed memory order when using C++ atomics. In such code, there
can be no cycles in ⊑∪ rf, so there are no cycles in dp∪ rf, and the calculation of dp can be ignored.

Mathematical specifications. We believe that specifications should be written in formal mathematics
rather than prose, supported by tooling for developing expert intuition – like Symbolic MRDer.
There is no precedent for mathematical specification in the C++ standard, but it is the use of prose
that allowed the standard to harbour errors and ambiguities like the thin-air problem.

8 Conclusion
We set out new criteria for a memorymodel of an optimised concurrent systems language in §1.1.We
now revisit those criteria. C1 (memory reclamation), we support non-trivial allocations, reclamation,
and alias analysis. C2 (support for optimisations) we have demonstrated support for a wide range of
global and sequential optimisations, including those that rely on undefined behaviour. C3 (extrinsic
guarantees) along with undefined behaviour, our semantics is parameterised over an Ω which
provides an interface for facts about program execution which come from outside the program
syntax, to be leveraged while removing dependencies from executions. C4 (tooling support), our
tool has validated our model over 173 tests automatically. Thanks to a combination of a decidable
semantics, and optimisations derived from monotone properties of predicates, the tool is orders of
magnitude faster than previous work. C5 (justification) dependencies are derived from a justification
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relation. For every justification that is used, there is a sequence of elaborations from a syntactic
dependency to the semantic dependency realised in the execution.
The thin-air problem afflicts optimised concurrent languages that admit relaxed memory be-

haviour. The crux of it is modelling an envelope of allowable behaviour around compiler optimisa-
tion. This is not just a theoretical problem: there is a live discussion among industrial standards
writers to find a definition of C++ that permits aggressive compiler optimisation but also precisely
defines the semantics of a program [34]. sMRD captures information that compilers do use to
inform optimisation, but that previous models fail to leverage. The result is a dp relation that solves
the thin-air problem, but also that admits more optimisations than prior work.

9 Data-Availability Statement
The artefacts associated with this publication, external to the paper are listed below, together with
where they can be found.

(1) Symbolic MRDer is available online and will be submitted for artefact evaluation.
(2) The corpus of tests is available on the Symbolic MRDer website.
(3) The appendix, included as supplementary material, includes the full formalisation and proofs.
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A Forwarding

1 int r1 = x;
2 x = 1;
3 int r2 = x;
4 if (r1 == 1)
5 y = r2;
6 else
7 y = 1;

�������� 8 int ry = y;
9 x = ry;

Example A.1a: LB+sfwd

1 int r1 = x;
2 z = 1;
3 if (r1 == 1) {
4 z = 1;
5 int r2 = z;
6 if (r2 == 0) y = 1;
7 } else {
8 int r2 = z;
9 if (r2 == 0) y = 1;

10 }

�������� 11 int ry = y;
12 x = ry;

Example A.2a: LB+ssfwd

Store forwarding. Similarly, it is possible that a write followed by a read run without interference.
In Example A.1a we can forward the value from the write into the value read, this effectively elides
the load. This rewrites all occurrences of r1 with a constant 1. This transforms Example A.1a
towards Example 1.5a. This optimisation is not currently performed by GCC or Clang for similar
reasons to load forwarding.

(𝑟1 = 1, {3}) ⊢ (5 :𝑊 𝑦 𝑟2 ) { (𝑟1 = 1, {1}) ⊢𝑟2=1 (5 :𝑊 𝑦 1)

Store-store forwarding. Example A.2a presents a much busier example, of note here is the duplicate
writes on Lines 2 and 4. Upon reaching Line 8 we would have executed one of these writes, but upon
reaching Line 5 we would have executed both of these writes: can we tell the difference? Following
the same ideas as before, these stores could be fused as it is possible that this is indistinguishable
from the separate stores. Performing this transformation allows us to lift Lines 5 and 6 (Lines 8 and
9) out of the conditional. The perspective from GCC and Clang is the same as the other forwarding
examples.

(𝑟1 = 1 ∧ 𝑟2 = 0, ∅) ⊢ (6 :𝑊 𝑦 1)
(𝑟1 ≠ 1 ∧ 𝑟2 = 0, ∅) ⊢ (9 :𝑊 𝑦 1) {

(𝑟1 = 1 ∧ 𝑟2 = 0, ∅) ⊢4∉𝜋1 (rf) (6 :𝑊 𝑦 1)

(𝑟1 ≠ 1 ∧ 𝑟2 = 0, ∅) ⊢4∉𝜋1 (rf) (9 :𝑊 𝑦 1)

1 int r1 = x;
2 if (r1 == 1) {
3 y = 2;
4 y = 1;
5 } else
6 y = 1;

�������� 7 int ry = y;
8 x = ry;

Example A.3a: LB+we

Write elision. The final variation of forwarding is write-elision. It is similar in nature to store-store

forwarding except that instead of eliding the later write we elide earlier writes that are shadowed
by later writes. Write elision allows for more interesting cases as the stores do not have to store
the same value: we could potentially only ever see the final value written. Example A.3a can
take advantage of this eliding the write on Line 3 as we immediately overwrite it on Line 4. This
transforms Example A.3a into Example 1.5a.

(𝑟1 = 1, ∅) ⊢ (4 :𝑊 𝑦 1)
(𝑟1 ≠ 1, ∅) ⊢ (6 :𝑊 𝑦 1) {

(𝑟1 = 1, ∅) ⊢3∉𝜋1 (rf) (4 :𝑊 𝑦 1)

(𝑟1 ≠ 1, ∅) ⊢3∉𝜋1 (rf) (6 :𝑊 𝑦 1)
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B Lifting

1 int r1 = x;
2 int ra = a;
3 if (r1 == 1) {
4 int rb = b, rc = c;
5 z = (ra + rb) / rc;
6 } else {
7 int rb = b, rc = c;
8 z = (ra + rc) / rb;
9 }

Example B.1a: SPRingRoll

Example B.1a shows a more complex example where we write similar expressions on Lines 5
and 8. Although we can rewrite all of the symbols within each of the expressions, the resulting
expressions are not equivalent, therefore the lifting proposed here should be forbidden.

C Strengthening

1 int r1 = x;
2 int r2 = z;
3 if (r1 == 1) {
4 y = 1;
5 } else {
6 if (r2 == 1)
7 y = 1;
8 }

�������� 9 z = 1;
10 int ry = y;
11 x = ry;

Example C.1a: LB+str

1 int r1 = x;
2 int r2 = z;
3 if (r1 == 1) {
4 if (r2 == 1)
5 y = 1;
6 } else {
7 if (r2 == 1)
8 y = 1;
9 }

�������� 10 z = 1;
11 int ry = y;
12 x = ry;

Example C.1b: LB+str

1 int r1 = x;
2 int r2 = z;
3 if (r2 == 1)
4 y = 1;
5 else {
6 if (r1 == 1)
7 y = 1;
8 }

�������� 9 z = 1;
10 int ry = y;
11 x = ry;

Example C.1c: LB+str

Strengthening. "Two steps forward, one step back". Like in all areas of life, progress is not always
in the right direction; this holds also for this semantics. There are situations in which to remove
dependencies on the whole, we must first introduce tangential dependencies. Example C.1a is
loading from two distinct locations so we cannot make use of forwarding, we can instead introduce
an extra guard of r2 == 1 to Line 4 copying the write to both the then and else branches
(Example C.1b). This transformation now allows us to lift and remove a dependency on Line 1
from Line 7, or remove this dependency from Line 4 but introduce another one (Line 2). These
transformations take Example C.1a to Example C.1c.

(𝑟1 = 1, ∅) ⊢ (4 :𝑊 𝑦 1)
(𝑟1 ≠ 1 ∧ 𝑟2 = 1, ∅) ⊢ (7 :𝑊 𝑦 1) {

(𝑟1 = 1 ∧ 𝑟2 = 1, ∅) ⊢ (4 :𝑊 𝑦 1)
(𝑟1 ≠ 1 ∧ 𝑟2 = 1, ∅) ⊢ (7 :𝑊 𝑦 1) {

(𝑟2 = 1, ∅) ⊢ (4 :𝑊 𝑦 1)
(𝑟2 = 1, ∅) ⊢ (7 :𝑊 𝑦 1)

D Expression Evaluation
Our expression language allows arbitrary value types, as well as arbitrary unary and binary
operators over these types. For any binary operation, we distinguish between its denotation and its
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semantics. For an operation written as ◦, we invoke its semantics with ⊙. Likewise, for a unary
operation written as □, we invoke its semantics with �.

⊙ : 𝑉 → 𝑉 → 𝑉 ◦ : E[𝑆1] → E[𝑆2] → E[𝑆1 ∪ 𝑆2]
� : 𝑉 → 𝑉 □ : E[𝑆] → E[𝑆]

Definition D.1. (Expression Grammar).

E[𝑆] ::= 𝑆 | 𝑉 | E [𝑆1] ◦ E[𝑆2] | □E[𝑆]

𝑆 is the set of uninterpreted symbols such as 𝛼 , and 𝑉 is the set of concrete values such as 5.
The value set 𝑉 is the union of all types 𝜏 permitted in the language – in our case this is natural
numbers, pointer values, and booleans.

The expression interpretation function, J_K, takes an environment and returns an expression.

J_K : ∀𝑆 ′ . E[𝑆] → (𝑆 → E[𝑆 ′]) → E[𝑆 ′]

The environment must be total over the symbols in the input, and return some expression. For
a well-typed expression with an environment from symbols to values, i.e. 𝑓 : 𝑆 → 𝑉 , the result
will be a value. For partially evaluating expressions, such as evaluating 𝛼 + 𝛽 under environment
𝑓 = 𝛼 ↦→ 1, we use the identity function ID to create a complete function from symbols to symbols.

JE[𝑆]K[𝑠 ↦→𝑣 ] = JE[𝑆]K[𝑠 ↦→𝑣 ]•ID

Definition D.2. (Expression Interpretation).

J𝑣 : VK : ∀𝑆, 𝑆 ′ . (𝑆 → 𝑆 ′) → 𝑉

J𝑣 : VK𝑓 = 𝑣

J𝛼 : SK : ∀𝑆.(𝛼 → 𝑆) → 𝑆

J𝛼 : SK𝑓 = 𝑓 (𝛼)

∀� : 𝜏𝑎 → 𝜏𝑏, 𝑒 : E[𝑆]
J□𝑒 : E[𝑆]K : ∀𝑆 ′ . (𝑆 → 𝑆 ′) → E[𝑆 ′]

J□𝑒K𝑓 =

{
�𝑣 if J𝑒K𝑓 = 𝑣 and 𝑣 : 𝜏𝑎
□J𝑒K𝑓 otherwise

∀⊙ : 𝜏𝑎 → 𝜏𝑏 → 𝜏, 𝑒1 : E[𝑆1], 𝑒2 : E[𝑆2],
J𝑒1 ◦ 𝑒2 : E[𝑆1 ∪ 𝑆2]K : ∀𝑆. (𝑆1 ∪ 𝑆2 → 𝑆) → E[𝑆]

J𝑒1 ◦ 𝑒2K𝑓 =


𝑣1 ⊙ 𝑣2

if J𝑒1K𝑓 = 𝑣1 ∧ J𝑒2K𝑓 = 𝑣2
and 𝑣1 : 𝜏𝑎 ∧ 𝑣2 : 𝜏𝑏

J𝑒1K𝑓 ◦ J𝑒2K𝑓 otherwise

Definition D.3. (Expression equality).

(𝜀1 ≡ 𝜀2) ≜ ∀𝑓 . J𝜀1K𝑓 , J𝜀2K𝑓 ∈ V ⇒ J𝜀1K𝑓 = J𝜀2K𝑓

E Atomic Compare Exchange

𝑟𝑖 := cas𝑜𝑟 ,𝑜𝑤 ,𝑜 𝑓 (𝑙, E[R], E[R])
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⟨𝑃⟩0 𝜌 𝜅 𝜑 = ⟨𝑃⟩𝑛 𝜌 𝜅 ⊥ ≜ ∅
⟨skip⟩𝑛 𝜌 𝜅 𝜑 ≜ 𝜅 (𝜌)
⟨𝑃1; 𝑃2⟩𝑛 𝜌 𝜅 𝜑 ≜ ⟨𝑃1⟩𝑛 𝜌 (𝜆𝜌. ⟨𝑃2 ⟩𝑛 𝜌 𝜅 𝜑 ) 𝜑

𝑟𝑚𝑤 ((E, ⊑, #, ⊑rmw,⋎), 𝑟 ,𝑤) ≜ (E, ⊑, #, ⊑rmw ∪ {(𝑟,𝑤)},⋎)
⟨𝑟𝑖 := 𝜀⟩𝑛 𝜌 𝜅 𝜑 ≜ 𝜅 (𝜌 [𝑟𝑖 ↦→ J𝜀K𝜌 ])

⟨𝑟𝑖 :=𝑜 𝑥⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 : 𝑅𝑜 𝑥 𝛼) [𝜑] • 𝜅 (𝜌 [𝑟𝑖 ↦→ 𝛼])
⟨𝑥 :=𝑜 𝜀⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 :𝑊𝑜 𝑥 J𝜀K𝜌 ) [𝜑] • 𝜅 (𝜌)
⟨𝑟𝑖 := &𝑥⟩𝑛 𝜌 𝜅 𝜑 ≜ 𝜅 (𝜌 [𝑟𝑖 ↦→ 𝑥])
⟨𝑟𝑖 :=𝑜 *𝜀⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 : 𝑅𝑜 J𝜀K𝜌 𝛼) [𝜑] • 𝜅 (𝜌 [𝑟𝑖 ↦→ 𝛼])
⟨*𝜀1 :=𝑜 𝜀2⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 :𝑊𝑜 J𝜀1K𝜌 J𝜀2K𝜌 ) [𝜑] • 𝜅 (𝜌)

⟨𝑟𝑖 := fadd𝑜𝑟 ,𝑜𝑤 (𝑥, 𝜀)⟩𝑛 𝜌 𝜅 𝜑 ≜ 𝑟𝑚𝑤 ( (𝑒1 : 𝑅𝑜𝑟 𝑥 𝛼) • (𝑒2 :𝑊𝑜𝑤 𝑥 (𝛼 + J𝜀K𝜌 ))•
𝜅 (𝜌 [𝑟𝑖 ↦→ 𝛼]), 𝑒1, 𝑒2 )

⟨𝑟𝑖 := cas𝑜𝑟 ,𝑜𝑤 (𝑥, 𝜀1, 𝜀2)⟩𝑛 𝜌 𝜅 𝜑 ≜ 𝑟𝑚𝑤 ( (𝑒1 : 𝑅𝑜𝑟 𝑥 𝛼) • (𝑒2 : [𝛼 = J𝜀1K𝜌 ]) •
((𝑒3 :𝑊𝑜𝑤 𝑥 𝜀2) • 𝜅 (𝜌 [𝑟𝑖 ↦→ 1])) + 𝜅 (𝜌 [𝑟𝑖 ↦→ 0]), 𝑒1, 𝑒3)

⟨fence𝑜⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 : 𝐹𝑜 ) • 𝜅 (𝜌)
⟨𝑟𝑖 := malloc(𝜀)⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 : 𝐴𝑙𝑙𝑜𝑐 𝛼 J𝜀K𝜌 ) • 𝜅 (𝜌 [𝑟𝑖 ↦→ 𝛼])

⟨free(𝑟𝑖 )⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 : 𝐹𝑟𝑒𝑒 J𝑟𝑖K𝜌 ) • 𝜅 (𝜌)

⟨if (𝑏) {𝑃1} else {𝑃2}⟩𝑛 𝜌 𝜅 𝜑 ≜ (𝑒 : [J𝑏K𝜌 ]) •
(
⟨𝑃1⟩𝑛 𝜌 𝜅 (𝜑∧J𝑏K𝜌 ) + ⟨𝑃2⟩𝑛 𝜌 𝜅 (𝜑∧¬J𝑏K𝜌 )

)
⟨while (𝑏) {𝑃}⟩𝑛 𝜌 𝜅 𝜑 ≜ ⟨if (𝑏) {𝑃 ; while (𝑏) {𝑃}} else {skip}⟩𝑛−1 𝜌 𝜅 𝜑

⟨𝑃1 ∥ 𝑃2⟩𝑛 𝜌 𝜅 𝜑 ≜ ⟨𝑃1⟩𝑛 𝜌 𝜅 𝜑 × ⟨𝑃2⟩𝑛 𝜌 𝜅 𝜑

Fig. 40. The collected semantic interpretation function for Symbolic MRD.

𝑟𝑚𝑤 ((E, ⊑, #, ⊑rmw,⋎), 𝑟 ,𝑤, 𝑜) ≜ (E, ⊑, #, ⊑rmw ∪ {(𝑟,𝑤, 𝑜)},⋎)
⟨𝑟1 := fadd𝑜𝑟 ,𝑜𝑤 (𝑙, 𝜀)⟩𝑛 𝜌 𝜅 𝜑 ≜ 𝑟𝑚𝑤 ( (𝑒1 : 𝑅𝑜𝑟 𝑙 𝛼) • (𝑒2 :𝑊𝑜𝑤 𝑙 (𝛼 + J𝜀K𝜌 ))•

𝜅 (𝜌 [𝑟1 ↦→ 𝛼]), 𝑒1, 𝑒2, 𝑜𝑟 )
⟨𝑟1 := cas𝑜𝑟 ,𝑜𝑤 ,𝑜 𝑓 (𝑙, 𝜀1, 𝜀2)⟩𝑛 𝜌 𝜅 𝜑 ≜ 𝑟𝑚𝑤 ( (𝑒1 : 𝑅𝑜 𝑓 𝑙 𝛼) • (𝑒2 : [𝛼 = J𝜀1K𝜌 ]) •

((𝑒3 :𝑊𝑜𝑤 𝑙 𝜀2) • 𝜅 (𝜌 [𝑟1 ↦→ 1])) + 𝜅 (𝜌 [𝑟1 ↦→ 0]), 𝑒1, 𝑒3, 𝑜𝑟 )

Read-Modify-Write (rmw) operations are deconstructed into their constituent events and their
immediacy requirement [atomics.order] is satisfied by creating ⊑rmwedges between each of the
events. A fetch-and-add (fadd) consists of a read followed by awrite. A compare-exchange (cas) is the
strong variant [atomics.ref.ops] consists of a read, followed by a conditional write; a complication
of cas is that if the conditional write is executed we also update the memory ordering of the prior
read, this necessitates keeping track of this promoted memory ordering, and feeding this promotion
information into the definition of ≤.
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F Promising Violation

1 int r1 = x;
2 if (r1 == 0)
3 y = 1 /! r1

;
4 else
5 abort ();

�������� 6 int r2 = y;
7 x = r2:

Example F.1a: UB+prom (x = 42)

(<[], [_ ↦→ 0], ∅>, <[], [_ ↦→ 0], ∅>,
{<𝑥 : 0@(0, 0]>, <𝑦 : 0@(0, 0]>})

(PROMISE 𝑇1 <𝑦 : 1@(1, 1]>)
(<[], [_ ↦→ 0], {<𝑦 : 1@(1, 1]>}>, <[], [_ ↦→ 0], ∅>,

{<𝑥 : 0@(0, 0]>, <𝑦 : 0@(0, 0]>, <𝑦 : 1@(1, 1]>})
(CONSISTENCY 𝑇1 <𝑦 : 1@(1, 1]>)

(READ𝑇1 𝑟1 := <𝑥 : 0@(0, 0]>[𝑟1 ↦→ 0] )

(WRITE𝑇1 <𝑦 : 1@(1, 1]>[𝑟1 ↦→ 0] )

(READ 𝑇2 𝑟2 := <𝑦 : 1@(1, 1]>)
(<[], [_ ↦→ 0], {<𝑦 : 1@(1, 1]>}>, <[𝑟2 ↦→ 1], [𝑦 ↦→ 1, _ ↦→ 0], ∅>,

{<𝑥 : 0@(0, 0]>, <𝑦 : 0@(0, 0]>, <𝑦 : 1@(1, 1]>})
(WRITE 𝑇2 <𝑥 : 1@(1, 1]>)

(<[], [_ ↦→ 0], {<𝑦 : 1@(1, 1]>}>, <[𝑟2 ↦→ 1], [𝑦 ↦→ 1, 𝑥 ↦→ 1, _ ↦→ 0], ∅>,
{<𝑥 : 0@(0, 0]>, <𝑦 : 0@(0, 0]>, <𝑦 : 1@(1, 1]>, <𝑥 : 1@(1, 1]>})

(READ 𝑇1 𝑟1 := <𝑥 : 1@(1, 1]>)
(<[𝑟1 ↦→ 1], [𝑥 ↦→ 1, _ ↦→ 0], {<𝑦 : 1@(1, 1]>}>, <[𝑟2 ↦→ 1], [𝑦 ↦→ 1, 𝑥 ↦→ 1, _ ↦→ 0], ∅>,

{<𝑥 : 0@(0, 0]>, <𝑦 : 0@(0, 0]>, <𝑦 : 1@(1, 1]>, <𝑥 : 1@(1, 1]>})
(WRITE 𝑇1 <𝑦 : 1@(1, 1]>)

(<[𝑟1 ↦→ 1], [𝑥 ↦→ 1, _ ↦→ 0], ∅>, <[𝑟2 ↦→ 1], [𝑦 ↦→ 1, 𝑥 ↦→ 1, _ ↦→ 0], ∅>,
{<𝑥 : 0@(0, 0]>, <𝑦 : 0@(0, 0]>, <𝑦 : 1@(1, 1]>, <𝑥 : 1@(1, 1]>})

(WRITE 𝑇1 <𝑥 : 42@(2, 2]>)
(<[𝑟1 ↦→ 1], [𝑥 ↦→ 2, _ ↦→ 0], ∅>, <[𝑟2 ↦→ 1], [𝑦 ↦→ 1, 𝑥 ↦→ 1, _ ↦→ 0], ∅>,

{<𝑥 : 0@(0, 0]>, <𝑦 : 0@(0, 0]>, <𝑦 : 1@(1, 1]>, <𝑥 : 1@(1, 1]>, <𝑥 : 42@(2, 2]>})

G Elaboration Convergence
For a program where |E| ∈ N ∧ |V| ∈ N:

Given we can relate sets of syntactically distinct expressions if they are semantically equivalent
we can abstract an expression: E : V | R∪A| → V, with size |E | = |V | R∪A| × V|. Hence, the size of
the justification space is bounded by:

|J| ≤ |E × (R ∪ A) × E2 × E × E|
∴ |J| ∈ N
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H Candidate Executed Undefined Behaviour Definition
An execution, 𝑋 , with ⊴= rf𝑋 ∪ dp𝑋 ∪ ≤𝑋 , has undefined behaviour if any of the following are
true:

(𝑒1 : 𝑅 𝑥 𝛼) ⋬(𝑒2 :𝑊 𝛼 𝜀)
(𝑒1 : 𝐴𝑙𝑙𝑜𝑐 𝛼 𝜀) ⋬(𝑒2 : 𝐹𝑟𝑒𝑒 𝛼)
(𝑒1 : 𝐴𝑙𝑙𝑜𝑐 𝛼 𝜀1) ⋬(𝑒2 :𝑊 𝛼 𝜀2)
(𝑒1 : 𝐴𝑙𝑙𝑜𝑐 𝛼 𝜀) ⋬(𝑒2 : 𝑅 𝛼 𝛽)

I Disjoint

(𝑎1, 𝑠1) ⊗ (𝑎2, 𝑠2) ≜ 𝑎1 ≥ 𝑎2 + 𝑠2 ∨ 𝑎2 ≥ 𝑎1 + 𝑠1

𝑥 ∈ L ⊗ 𝑒2 ≜ (𝑥, 1) ⊗ 𝑒2

𝑒1 ⊗ 𝑥 ∈ L ≜ 𝑒1 ⊗ (𝑥, 1)

𝑒1 ∈ A ⊗ 𝑒2 ≜ (𝑙𝑜𝑐 (𝑒1), 𝑣𝑎𝑙 (𝑒1) ⊗ 𝑒2

𝑒1 ⊗ 𝑒2 ∈ A ≜ 𝑒1 ⊗ (𝑙𝑜𝑐 (𝑒2), 𝑣𝑎𝑙 (𝑒2))
For execution, 𝑋 :

⊴≜ (≤ ∪ rf ∪ dp)∗

∀𝑒1, 𝑒2 ∈ A .(𝑒1 ⊴ 𝑒2 ∧ �𝑒′ ∈ C.
𝑒1 ⊴ 𝑒′ ⊴ 𝑒2 ∧ 𝑙𝑜𝑐 (𝑒1) ≡rf 𝑙𝑜𝑐 (𝑒′)) ⇒ 𝑒1 ⊗ 𝑒2

J Concrete Proposed C++ Standard Change
6.9.2 Multi-threaded executions and data races

...

6.9.2.2 Thin-air restriction
Some side effects are semantically dependent on evaluation operations. An evaluation A is
causally before an evaluation B if:

• A is a side effect on an atomic object M, and B is an evaluation of M that takes its value,
or

• A is semantically dependent on B, or
• for some operation X, A is causally before X and X is causally before B.

The implementation shall ensure that no program execution demonstrates a cycle in the
causally before relation.

[Note: Semantic dependency is implementation defined, TRxxxx gives a specification
on precisely what semantic dependencies should be preserved by an implementation. –end
note]

...
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33.5.4 Order and consistency
...

Implementations should ensure that no “out-of-thin-air” values are computed that circularly
depend on their own computation.

[Note: For example, with x and y initially zero,
// Thread 1:
r1 = y.load( memory_order :: relaxed );
x. store (r1 , memory_order :: relaxed );
// Thread 2:
r2 = x.load( memory_order :: relaxed );
y. store (r2 , memory_order :: relaxed );

this recommendation discourages producing r1 == r2 == 42, since the store of 42 to y is only
possible if the store to x stores 42, which circularly depends on the store to y storing 42. Note
that without this restriction, such an execution is possible. –end note]

[Note: The recommendation similarly disallows r1 == r2 == 42 in the following example, with
x and y again initially zero:

// Thread 1:
r1 = x.load( memory_order :: relaxed );
if (r1 == 42) y. store (42 , memory_order :: relaxed );
// Thread 2:
r2 = y.load( memory_order :: relaxed );
if (r2 == 42) x. store (42 , memory_order :: relaxed );

–end note]
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