
Mixed-Proxy Extensions for the NVIDIA PTX Memory
Consistency Model

Industrial Product
∗

Daniel Lustig
dlustig@nvidia.com

NVIDIA
Santa Clara, CA, USA

Simon Cooksey
simon@graymalk.in
University of Kent
Canterbury, UK

Olivier Giroux†

ogiroux@apple.com
NVIDIA

Santa Clara, CA, USA

ABSTRACT

In recent years, there has been a trend towards the use of accelerat-

ors and architectural specialization to continue scaling performance

in spite of a slowing of Moore’s Law. GPUs have always relied on

dedicated hardware for graphics workloads, but modern GPUs now

also incorporate compute-domain accelerators such as NVIDIA’s

Tensor Cores for machine learning. For these accelerators to be suc-

cessfully integrated into a general-purpose programming language

such as C++ or CUDA, there must be a forward- and backward-

compatible API for the functionality they provide. To the extent

that all of these accelerators interact with program threads through

memory, they should be incorporated into the GPU’s memory con-

sistencymodel. Unfortunately, the use of accelerators and/or special

non-coherent paths into memory produces non-standard memory

behavior that existing GPU memory models cannot capture.

In this work, we describe the “proxy” extensions added to version

7.5 of NVIDIA’s PTX ISA for GPUs. A proxy is an extra tag abstractly

applied to every memory or fence operation. Proxies generalize

the notion of address translation and specialized non-coherent

cache hierarchies into an abstraction that cleanly describes the

resulting non-standard behavior. The goal of proxies is to facilitate

integration of these specialized memory accesses into the general-

purpose PTX programming model in a fully composable manner.

This paper characterizes the behaviors that proxies can capture, the

microarchitectural intuition behind them, the necessary updates to

the formal memory model, and the tooling that we built in order to

ensure that the resulting model both is sound and meets the needs

of business-critical workloads that they are designed to support.

CCS CONCEPTS

• Computer systems organization → Single instruction, mul-

tiple data; Special purpose systems; • Theory of computation

→ Parallel computing models; • Computing methodologies

→Modeling methodologies.

∗This paper is part of the Industry Track of ISCA 2022’s program.
†Author is now at Apple, but work was performed while at NVIDIA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA ’22, June 18–22, 2022, New York, NY, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3533045

KEYWORDS

memory consistency, memory ordering, GPU, synchronization

ACM Reference Format:

Daniel Lustig, Simon Cooksey, and Olivier Giroux. 2022. Mixed-Proxy Ex-

tensions for the NVIDIA PTX Memory Consistency Model Industrial
Product. In The 49th Annual International Symposium on Computer Archi-

tecture (ISCA ’22), June 18–22, 2022, New York, NY, USA. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3470496.3533045

1 INTRODUCTION

In shared memory programming models, threads’ legal interactions

through memory are governed by the memory consistency model.

Much ink has been spilled debating trade-offs in this space: strict vs.

relaxed memory models, scoped vs. non-scoped models for GPUs,

and approaches providing sequential consistency for data race-free

programs. In spite of ongoing research, many topics in the field re-

main less than well understood, even by experts. Nevertheless, the

memory model is a crucial part of a system’s overall programming

model. Vendors that wish to provide forward-compatible program-

ming models must continually strive for a sound and complete

memory consistency model for their architectures.

One of the major challenges in defining a memory model for

modern GPUs is the increasing number of special-purpose architec-

tural features and accelerators. Across the entire industry, vendors

are turning towards the use of special-purpose acceleration as a

means of delivering continued performance scaling where scaling

of general-purpose cores has slowed. NVIDIA GPUs have a number

of such accelerators: Tensor Cores, Ray Tracing (RT) Cores, accel-

eration of surface and texture graphics operations, and ISA-defined

asynchronous memory copy instructions, to name a few. Growing

in number with each GPU generation, these features and accel-

erators range across a spectrum from being very tightly coupled

to the CUDA Core’s pipeline to being very loosely coupled and

interacting asynchronously with the launching thread. In addition,

for various reasons (later described in Section 4), these architec-

tural components may use non-standard non-coherent paths to the

memory system.

The NVIDIA PTX memory consistency model, formalized with

version 6.0 of the PTX ISA, is a scoped model [27, 37] but as Figure 1

shows, scope memory models cannot capture the architecturally

visible behavior of the features described above. Instead, in existing

GPU memory models, hardware features such as surface, texture,

and constant memory are merely described as “incoherent”, and

the programming guide simply declares that such memory should

not be modified during the execution of a CUDA grid.

1058

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3470496.3533045&domain=pdf&date_stamp=2022-06-11

ISCA ’22, June 18–22, 2022, New York, NY, USA Daniel Lustig, Simon Cooksey, and Olivier Giroux

T0 T1 T64 T65 Tn-1 Tn

CTA CTA

GPU

[x] [x] [x]

[x]

CTA

[x]

[x]

SYS [x]

(a) Intuitively, a GPU’s scope hierarchy forms a tree, with a thread
at each leaf and caching at each node. There is one path from each
thread to the root node.

T0

L1 Cache Tex Cache Const $

L2 Cache (GPU)

[x] [x] [x]

[x]

Accel $

[x]

(b) Proxies address a different scenario in which there is a lattice
pattern with multiple non-coherent paths in hardware from any
given thread to the root node.

Figure 1: The growing number of accelerators and special-

purpose caches dictates that the GPU memory model needs

to be extended beyond what the baseline scoped memory

model is able to describe.

While the approach of “just don’t do that” sufficed in the past,

it is quickly becoming inadequate as tight integration of acceler-

ators is an increasingly fundamental part of the CUDA program-

ming model. Integration of accelerators and special-purpose non-

coherent memory paths has become a primary goal for the PTX

memory consistency model. The performance enabled by GPUs’

new hardware features are critical to their success in highly com-

petitive markets such as machine learning. However, NVIDIA also

promises to deliver a forward-compatible programming model at

the PTX layer. It is not sufficient to provide forward compatibility

only at the CUDA or software framework layers. The program-

ming model must also be available for general-purpose use, both

for customers and for benchmarks1.

In this paper, we present NVIDIA’s recent proxy extensions to the

PTX memory consistency model. A proxy is a forward-compatible

1e.g., MLPerf’s “Available” category requires both hardware and software to be publicly
available [34].

programming model abstraction describing a particular path that

an instruction or accelerator’s memory operations can take through

the memory system. Proxies provide a well-defined programming

model for the types of high-performance microarchitectures that

NVIDIA designs to meet business needs, while also allowing PTX

software optimized for current architectures to continue running

correctly and efficiently on future architectures. The proxy memory

model has recently been deployed in PTX 7.5 [37] and may be

further extended in the future as the architecture evolves.

Overall, the contributions of this paper are as follows:

(1) A summary of why NVIDIA made a conscious choice to

expose an extremely relaxed memory model in PTX.

(2) A description of a generally applicable model for how to

capture the behavior of special-purpose accelerators and

caches within a state-of-the-art general-purpose memory

consistency model.

(3) A formal specification of NVIDIA’s new proxy-aware PTX

memory consistency model.

(4) A set of publicly-available artifacts providing further details

and verification of the proxy extensions, at https://github.

com/nvlabs/mixedproxy

2 BACKGROUND

In this section, we revisit some necessary background on GPU

architecture and the role of memory models in modern CPU and

GPU architectures.

2.1 NVIDIA GPU Architecture

From the compute perspective, NVIDIA GPUs currently consist of

as many as 128 streaming multiprocessors (SMs) executing hundreds

of thousands of concurrent threads communicating via a shared

address space. Each SM consists of Single Instruction, Multiple

Thread (SIMT) cores executing program code. Each SM also contains

an L1 cache, a texture cache, a constant cache, and other specialized

blocks (see Section 3.1). There is a single logical L2 cache physically

distributed across the GPU.

NVIDIA’s hierarchical programming model largely reflects the

GPU’s architecture. The user launches grids of threads, each of

which runs a separate copy of the same code. Each grid is divided

into thread blocks, also known as cooperative thread arrays (CTAs),

comprising a set of threads guaranteed to run concurrently on a

single SM. Each CTA is divided microarchitecturally into warps

whose size matches the width of the SIMT execution engine. Re-

cently, warp-synchronous programming has been deprecated in

favor of a model in which each thread is an independent scheduling

entity with starvation-freedom guarantees [35, 36].

All threads in a process share a global virtual address space, even

across multiple GPUs. Each thread also has its own local memory

space and each CTA has its own shared memory space implemen-

ted as a scratchpad either within or adjacent to the L1 cache. For

composability and convenience when writing code for the GPU, all

three spaces are mapped into a single genericmemory space. Before

the introduction of proxies in version 7.5, the PTX memory model

applied only to the accesses performed to this generic memory

space.

1059

Mixed-Proxy Extensions for the NVIDIA PTX Memory Consistency Model

Industrial Product ISCA ’22, June 18–22, 2022, New York, NY, USA

Thread 0 Thread 1 Thread 2 Thread 3

st [x], 1 ld r1, [x] ld r3, [y] st [y], 1

ld r2, [y] ld r4, [x]

Proposed final outcome:

r1 == r3 == 1; r2 == r4 == 0

Figure 2: The “independent reads of independent writes”

(IRIW) litmus test [10]. Prior to efforts to formalize the x86

memory model, Intel and AMD architecture specifications

disagreed on whether the proposed outcome is legal [42]. At

question is whether threads 1 and 2 can observe the updates

to x and to y occurring in different orders.

2.2 Formalization of Memory Consistency
Models

The overall goal of an architecture specification is to define a com-

mon programming model abstraction compatible with many dif-

ferent implementations. A memory consistency model, or simply

memory model, defines the values that can be legally returned by

loads from memory. The memory model forms an important com-

ponent of the overall definition of an instruction set architecture

(ISA). The role of an architecture-level memory model is to define

portability guarantees about the way in which threads can interact

with each other via memory.

Historically, industry architecture specifications have been writ-

ten using informal natural language rather than mathematical form-

alism, and memory models have been no exception. However, as

developers of high-performance data structures continue to ag-

gressively optimize their code to take advantage of any available

performance improvements, an increasing number of gaps have

been identified in natural language memory model specifications.

These gaps fall roughly into two categories: situations where the

specification was too vague to give a clear adjudication of which

behaviors were valid (e.g., Figure 2) and situations where the rules

stated that certain behaviors are forbidden despite being empirically

observable on some implementations [5].

These gaps have driven industrial adoption of mathematical

formalism for memory model specification. The memory models

for nearly all mainstream architectures are now formally specified,

via officially sanctioned corporate documents [6, 17, 37] and/or via

collaboration between academia and industry [3, 29, 42]. Relaxed

memory models from industry can be notoriously complicated,

and the large number of obscure corner cases makes them very

difficult for humans to successfully reason about. The use of formal

models allows architects to develop machine-checked correctness

proofs that provide a more complete and more reliable means of

verifying the validity of these models. The formal models also

help programmers: designers of high performance concurrent data

structures can verify correctness properties of their algorithms, and

they can use automated tooling to reason about the behavior of

their code.

2.3 GPU Memory Consistency Models

GPUmemory model specifications have followed the trend towards

increased formalism. The heterogeneous race-free memory model

SM

Texture Cache

Tag: coords

Tag: coords

L1 Cache

Tag: virtual addr.

Tag: virtual addr.

Constant Cache

Tag: bank ID

Tag: bank ID

L2 Cache Tag: physical addr. Tag: physical addr.

Figure 3: A high-level block diagram representing a generic

NVIDIA GPU. Many PTX ISA features live outside the stand-

ard memory mode due their use of features such as non-

coherent texture or constant caches.

introduced the notion of scope to GPUmemorymodels [16]. A scope

is defined as the set of threads with respect to which a particular

synchronization operation is applicable. GPUs commonly provide

scoped synchronization across a CTA, across a single GPU, and

across the entire system. Expert programmers can manually specify

the scope of any particular synchronization operation, thereby

accepting increased program complexity in exchange for increased

performance. While there remains opposition to the continued

use of scopes [45], scoped memory models remain the standard

approach followed by industry today.

NVIDIA first adopted a formal memory model with the release of

the PTX 6.0 specification and the Volta architecture generation [37].

PTX is NVIDIA’s virtual instruction set architecture is the lowest

layer of the stack at which NVIDIA makes backward and forward

compatibility guarantees. PTX provides a scoped memory model

designed to accommodate GPU microarchitectures demonstrating

very relaxed memory behavior, while nevertheless remaining com-

patible with important high-level programming languages such as

C++ and CUDA. The rules of the PTX memory model were form-

ally analyzed and proven compatible with the C++ memory model

specification in 2019 [27]; this analysis was considered to be an im-

portant prerequisite to the official release of the model. The proxy

memory model described in this paper is a new extension to the

PTX 6.0 memory model.

3 MOTIVATION: MODERN GPU
ACCELERATED COMPUTING
ARCHITECTURES

In this section, we describe the architecture features that the proxy

memory model targets and the architectural consequences of their

inclusion.

3.1 Architecture Features Targeted by the Proxy
Memory Model

Many accelerated computing features in the PTX ISA and planned

for the future remain outside the PTX 6.0 memory model. Here, we

1060

ISCA ’22, June 18–22, 2022, New York, NY, USA Daniel Lustig, Simon Cooksey, and Olivier Giroux

enumerate some of the new features supported by the introduction

of proxies into the memory model.

3.1.1 Surface and TextureMemory. CUDAand PTX provide general-

purpose compute code with the ability to manipulate the texture

and surface primitives used by graphics workloads. At a high level,

textures and surfaces are similar graphics-targeted data structures

living in memory; surfaces have the advantage of being read/write,

while textures are read-only but support operations such as inter-

polation or filtering while surfaces do not. A GPU’s texture cache is

a dedicated structure designed to accelerate operations such as in-

terpolation and to cache data using a tagging scheme that promotes

locality across multiple spatial dimensions.

The behavior of the texture cache is abstractly depicted in Fig-

ure 3. As the current CUDA specification states, “within the same

kernel call, the [texture] cache is not kept coherent with respect to

global memory writes and surface memory writes, so any texture

fetch or surface read to an address that has been written to via

a global write or a surface write in the same kernel call returns

undefined data” [36]. As such, the current PTX specification simply

states that “[t]he memory consistency model does not apply to

texture [...] and surface accesses” [37].

3.1.2 Constant Memory. GPU constant memory is a small, distinct

address space reserved to hold fixed values such as some kernel

launch parameters, some compile-time constants, user-declared

constant memory arrays, and other metadata relevant to grid exe-

cution. The GPU’s constant cache hierarchy bypasses the L1 cache

to provide CTAs in each grid with optimized low-latency access to

constant memory. This behavior is also depicted in Figure 3.

In spite of their name, constants can also be accessed using

read/write global memory aliases through CUDA APIs such as

cudaGetSymbolAddress(). Indeed, this is how constants are up-

dated by the host CPU before passing control to GPU grids. How-

ever, constants updated by the host during execution of a GPU grid

result in undefined behavior.

3.1.3 Virtual Aliasing. The CUDA cuMemMap()API provides a way
to create multiple general-purpose virtual aliases to any generic

piece of memory [36], much like a standard mmap() call does on

CPUs. A programmer might use this to produce a read-only and a

read-write pointer for the same region. This pair of virtually aliased

pointers might also use different CUDA L2 access management

policies—which influence L2 occupancy—when accessing the same

data, or they can be used to manage mappings visible to more than

one process.

Although CUDA APIs allow creation of virtual aliases, “writes

to one proxy of the allocation are considered inconsistent and

incoherent with any other proxy of the same memory” [36] because

some levels of the GPU’s cache may be virtually tagged rather than

physically tagged. This is once again depicted in Figure 3. This

behavior is unlike the analogous situation in CPUs, because CPUs

today typically use physically tagged caches or otherwise ensure

that virtual aliases are otherwise automatically resolved in a way

that ensures same-physical-address ordering.

3.1.4 Tightly Coupled Accelerators. SMs also contain various special-

purpose accelerators that interact with memory in non-standard

ways. Tensor Cores, which accelerate tensor operations such as

warp level matrix multiply-accumulate (wmma) instructions, are
highly optimized for high bandwidth with respect to access patterns

commonly seen inmachine learningworkloads. Another example of

a special purpose accelerator is accelerated asynchronous memory

copy instructions (cp.async), which do not obey standard intra-

thread memory ordering but instead behave as if they fork a new

thread to perform the copy. These accelerators and others like them

may contain specialized non-coherent caches and paths to memory

that do not obey normal memory ordering rules, just as the texture

and constant caches do.

3.2 Consequences of Non-Standard Memory
Access

Each feature in the previous section exists to accelerate operations

for important workloads. However, their non-standard memory

behavior requires special treatment in the memory consistency

model. Most notably, each feature described can violate intra-thread

same-address memory ordering rules.

To illustrate one example, suppose a user performs a store to

global memory and then performs a load to a constant bank alias of

the same physical address, as shown in Figure 4a. Figure 4b shows

how this program might be executed on a GPU microarchitecture

today. The store will execute first 1 , followed by the load 2 .

From here, either of the following may occur:

(1) The load may hit on a previously-cached value still present

in the constant cache 3a , but this value is stale because a

newer write has been performed to the underlying physical

address. Nevertheless, the stale line may still be resident

because the caches are not kept coherent.

(2) Alternatively, the store may be delayed while accessing the

generic cache 1 if, for example, the cache is blocked ser-

vicing other requests. If the load request passes quickly

through the constant cache to the L2 cache 3b before the

store passes through the L1 cache to the L2 cache 4 , then

the load and store will appear at the L2 cache out of order.

In both of these scenarios, the load will return a value written by a

previous store, thereby effectively causing the load to have been

reordered before the earlier store to the same physical address. The

consequence of such same-address ordering violations is that they

introduce the possibility of an intra-thread data race. Much like

a regular data race, the order in which the store and load in the

example above appear to execute is non-deterministic2.

Making things worse is that no existing synchronization mechan-

isms in PTX 6.0 suffice to prevent these intra-thread data races. For

example, Figure 4a shows a __threadfence()API call, whichmaps

to a fence instruction in PTX. However, this fence was designed
to synchronize generic memory operations and hence does not

synchronize the non-coherent memory paths used in this example.

Therefore, to build a complete model, a new synchronization mech-

anism is needed that both resolves intra-thread data races across

non-standard memory paths and integrates cleanly with standard

inter-thread synchronization (e.g., fence instructions, or .release

2In fact, the results may not always be describable in terms of simple interleavings
at all. Data races are commonly defined to result in undefined behavior rather than
simple non-deterministic interleavings.

1061

Mixed-Proxy Extensions for the NVIDIA PTX Memory Consistency Model

Industrial Product ISCA ’22, June 18–22, 2022, New York, NY, USA

__constant__ int const_array[N];
__global__ void kernel(int *global_ptr, /* ... */) {

/* Store global */
global_ptr[0] = 42;

/* The fence serves no purpose here */
__threadfence();

/* Constant load to alias of same address */
int x = const_array[0];

/* ... */
}
int main(int argc, char* argv[]) {

/* ... */

/* Get global alias for the constant array */
int *global_pointer;
cudaGetSymbolAddress(
(void**)&global_pointer, const_array);

/* Launch the grid */
kernel<<<1,1>>>(global_pointer, /* */);

/* ... */
}
(a) An example of CUDA code that exposes the weak ordering behavior of
mixed-proxy execution.

SM

Constant Cache

 Tag: bank ID

L1 Cache

Tag: virtual addr.

st [global_ptr[0]]
ld.const [const_array[0]]

1

2

4

To L2 cache

3b

3a

(b) If 3a is a hit on a stale cache line or 3b reaches memory before 4 then

the instructions will appear to have been reordered.

Figure 4: Example showing how specialized caches can pro-

duce architecturally visible same-address memory reorder-

ing, even within a single thread.

and .acquire modifiers). This motivates the creation of the new

proxy fence synchronization primitive that NVIDIA has integrated

into the PTX 7.5 memory model.

4 WHY DON’T EXISTING SOLUTIONS
SUFFICE?

NVIDIA’s GPUs are not the first or only architecture to utilize

features that help performance but do not obey standard memory

ordering. However, perhaps uniquely among its peers, NVIDIA

has consciously chosen to embrace exposure of the highly relaxed

memory behaviors introduced by these features into the ISA itself.

Here, we discuss why NVIDIA has taken the approach to make the

memory model highly relaxed, rather than choosing from available

alternatives.

4.1 “Just Don’t Do That”

One approach to incorporating the features described in Section 3.1

would be to disallow any code that exposes the lack of coherence

by deeming it undefined behavior. In fact, for many years this was

the approach taken by NVIDIA to describe surface, texture, and

constant memory. However, this approach has become insufficient

for two reasons. First, non-standard memory accelerators existed

historically as part of the graphics pipeline, with niche use in the

compute pipeline. Today, newer features such as asynchronous

memory copies and tensor core operations are core parts of the

compute pipeline for modern workloads, particularly within the

domain of machine learning. As described in Section 3.1, these

featuresmake use of special non-coherent paths tomemory. In order

for them to be exposed in PTX in a forward-compatible manner,

there must be a forward-compatible specification of their behavior

within the memory model.

Second, disallowing code that exposes the non-coherent paths in

the microarchitecture cuts off the exploration of new optimization

ideas. For example, a user maywish to write CUDA code to generate

surfaces and textures on the fly for their graphics applications.

Or, a user performing kernel fusion (i.e., merging two grids into

one by manually concatenating the code and performing manual

synchronization in between) may wish to overwrite the first grid’s

constants with the second grids’ constants on the fly during the

inter-grid transition. The proxy model allows optimizations such as

these to be explored and exposed in PTX in a forward-compatible

manner.

4.2 “Just Make Everything Coherent”

If “just don’t do that” is considered an unacceptable solution, then

an alternative solution would be to “just make everything coherent”.

To achieve this, NVIDIA would need to re-architect the SM and/or

memory system to eliminate the presence of multiple non-coherent

and/or non-physically tagged caches within the SM. Adding phys-

ical tagging with a coherence mechanism to each of the relevant

specialized caches would indeed eliminate the problems identified

in the previous section.

Unfortunately, there are a number of downsides to the approach

of “just make everything coherent”. First, adding new coherence

mechanisms would impose a cost in performance, power, and/or

area. Each of the existing structures has been highly optimized over

multiple designs to provide efficient execution for specialized opera-

tions. For example, the texture cache is tagged so that it is optimized

for locality across multiple coordinate dimensions, and this form of

locality does not always correspond well to locality within the one

dimensional generic address space. Changing the cache line tag

structure to hold only physical addresses would negatively impact

texture locality and hence performance. Alternatively, changing

the tags to hold both physical addresses and tag coordinates would

add area and power to a performance-critical and highly replic-

ated portion of the GPU’s microarchitecture. Finally, imposing a

requirement that all accesses perform address translation before

accessing any caches would itself impose a substantial burden on

the L1 cache latency and TLB throughput. None of these points

individually is fundamentally intractable, but in all they represent

very real costs that to date have led NVIDIA not to pursue them.

1062

ISCA ’22, June 18–22, 2022, New York, NY, USA Daniel Lustig, Simon Cooksey, and Olivier Giroux

Second, academic publications often grossly underestimate the

design and verification costs required to add new features to the mi-

croarchitecture. In industry, there is a finite budget that can be spent

on architectural innovation for each generation. Re-architecting

large portions of the SM to become fully coherent would cost a

non-trivial portion of the development budget of any given gen-

eration. From a design cost perspective, it is also easier for each

architectural unit to be designed as a mostly self-contained entity

rather than allow tight coupling between units.

4.3 Reusing Existing Synchronization
Mechanisms

A third option to restore coherence in non-coherent memory paths

would be to repurpose existing PTX inter-thread synchronization

mechanisms (fence and membar instructions, and .release and

.acquire annotations) to synchronize the currently non-coherent

paths. However, doing so would add a non-trivial overhead to

the cost of performing these operations, particularly for the CTA-

scoped variants which are expected by programmers to be very fast.

Conceptually this would pessimize the common case for the sake

of supporting a smaller set of targeted synchronization scenarios,

and this trade-off is not an obvious win.

4.4 Summary of Alternatives to Proxies

During the development of the proxy memory model extension

and associated GPU architecture, NVIDIA evaluated the trade-offs

described above. In the end, NVIDIA made a conscious choice to

develop and release the proxy memory model extension rather than re-

architect the cache hierarchy to become fully coherent. This shifts the

verification burden away from individual components and towards

a more system-level perspective, but the design and verification of

proxies and proxy fence implementations (Section 5) was considered

preferable. This also shifts complexity from the architecture to the

programming model, thereby making life more complicated for

programmers. In contrast to current trends observed in parts of

academia, NVIDIA felt that continuing to pursue aggressively weak

(but nevertheless fully rigorous) memory models was the approach

that provided the best return on investment. Programmers looking

for optimal performance on specialized accelerators are (perhaps

for lack of better alternatives) willing to do the requisite low-level

coding. As such, we now spend the rest of this paper explaining the

new proxy programming model, before concluding with Section 7

which explains how both experts and non-experts can program

with these proxies in a composable manner.

5 PROXY MEMORY MODEL OVERVIEW

In this section we provide an intuitive overview of the proxy model.

Section 6 provides a more formal description.

5.1 Generalizing a Model Supporting Virtually
Tagged Caches

The notion of proxies can be viewed as a generalization of a system

employing both virtual address translation and virtually tagged

caches. As on any systemwith virtual memory, all memory accesses

are performed using virtual addresses alone, as the programming

model exposes only virtual addresses to the user. On traditional

systemswith physically tagged caches, all virtual memory addresses

are translated into physical memory addresses prior to (or, for

virtually indexed caches, in parallel with) checking for cache hits.

Therefore, the observable behavior of the memory system (i.e., the

memory model) is effectively determined by physical addresses

alone. However, on systems with one or more layers of virtually

tagged caches, two different virtual address aliases mapping to the

same physical address will appear as two unrelated addresses within

different cache lines. As such, normal rules such as maintaining

physical address read-after-write ordering are violated, in the same

way as described in Section 3.2.

For NVIDIA GPUs, rather than writing off architecturally visible

virtual caching behaviors as bugs, we have chosen to embrace them

due to the architectural flexibility that allowing these behaviors en-

ables. A memory model that can account for these behaviors must

satisfy a few properties. First, it must capture the set of mappings

from each virtual address to its associated physical address, includ-

ing tracking the presence of virtual address aliases. Second, it must

account for the type of non-deterministic intra-thread behavior

described in Section 3.2. Third, it must provide a synchronization

mechanism capable of resolving data races. Our proxy memory

model captures all of these behaviors, as well as those observed

when using texture caches, constant caches, and accelerators ac-

cessible from the GPU SM.

5.2 The Proxy Abstraction

The foundation for the proxymemorymodel is the pre-existing PTX

memory model described in Section 2.3 [27, 37]. As in most memory

models, the basic primitives are memory operations (loads, stores,

and atomic read-modify-writes) and memory fences. Memory oper-

ations carry an associated address; this was traditionally taken to

be the physical address because existing memory models assume

that virtual aliases will be resolved automatically by hardware.

We define a proxy as an extra tag abstractly applied to each op-

eration when performing memory model analysis. Proxies need

not correspond directly to actual bits in hardware; instead, they

are merely an abstract conceptual token used to categorize each

memory operation. The purpose of proxies is to capture the fol-

lowing key property: operations performed with the same proxy

are guaranteed to obey the rules established for generic memory

operations in PTX 6.0 (before the introduction of proxies). How-

ever, operations performed with different proxies may violate those

rules, as intuitively they may be subject to the microarchitectural

situations described in Section 3.1.

Figure 5 shows some examples of proxies being applied tomemory

operations. In the first row, the ld.global instruction is, unsurpris-

ingly, modeled as a load operation to some physical address. Since it

is a normal load to generic memory (as defined in Section 2.1), it is

assigned the generic proxy tag. Likewise, the store in the second row

is modeled as a store operation to the same address using the same

proxy. The store in the third row is again similar, except that it is

performed to a virtual alias. In this case, the physical address is the

same, but the generic proxy is specialized with a different virtual

address. The use of different proxies reflects the fact that the L1

cache may be virtually tagged, and hence the two operations may

1063

Mixed-Proxy Extensions for the NVIDIA PTX Memory Consistency Model

Industrial Product ISCA ’22, June 18–22, 2022, New York, NY, USA

PTX Instruction Operation (Physical) Address Scope Proxy

ld.global.u32 r1, [rd6] Load 0x4080 Weak Generic (virtual alias == [rd6])

st.global.sys.u32 [rd6], r4 Store 0x4080 Sys Generic (virtual alias == [rd6])

st.global.u32 [rd8], r9 Store 0x4080 Weak Generic (virtual alias == [rd8])

sust.b.1d.vec.b32.clamp [surf, r1], r2 Store 0x9600 Weak Surface (CTA 4)

Figure 5: As these examples show, a proxy is simply an extra tag conceptually associated with each memory operation based on

the operation and virtual address. rd6 and rd8 are assumed to hold two different virtual addresses aliasing the same physical

address.

SM 0

L1

L2 Cache

1

Tex

SM n

L1 Tex

2

3 6 7

4

5

Thread 0
(1) ld [x] (generic)
(2) st [y] (generic)
(3) tex [t] (texture)

Thread 3
(4) st [x] (generic)
(5) tex [t] (texture)

Thread 92
(6) ld [y] (generic)
(7) tex [t] (texture)

Generic/Texture
reconvergence pt.

Generic/Texture
reconvergence pt.

Figure 6: Microarchitectural intuition for the behavior of

proxies. Each pictured thread executes a series of memory

operations (1)–(7); each operation is labeled using the proxy

associatedwith that operation. Addresses x and t are assumed

to alias. The operations then map onto microarchitectural

packets that take different paths through the pictured imple-

mentation.

be subject to an intra-thread data race. Finally, the surface store

instruction sust in the fourth row also results in a store operation

to some physical address. However, in this case it is tagged as being

performed using the surface proxy rather than the generic proxy, as

it will be implemented microarchitecturally as passing through the

texture cache rather than the L1 cache, again causing the accesses

to form an intra-thread data race.

The PTXmemory model rules are then adjusted as follows, using

Figure 6 as an intuitive guide:

• Operations from threads in the same CTA to the same ad-

dress and using the same proxy (e.g., 1 and 4 , or 3 and

5) perform exactly as they would in the original memory

model, i.e., intra-thread same-address ordering and standard

inter-thread synchronization rules are respected. Intuitively,

by virtue of being issued by the same CTA, both accesses

would follow identical (in-order) paths through the memory

system, and would use matching form(s) of tagging in caches

along the way, so no out-of-the-ordinary behavior can be

observed.

fence{.sem}.scope;
fence.proxy.proxykind;

.sem = { .sc, .acq_rel };

.scope = { .cta, .gpu, .sys };

.proxykind = { .alias };

Figure 7: The fence instruction in PTX 7.5 [37]. Only the

alias proxy is currently supported.

• Operations to the same address using the same generic proxy

but from different CTAs (e.g., 2 and 6 , or 3 and 7)

also obey standard inter-CTA synchronization and memory

ordering rules. This rule and the prior rule together ensure

that pre-existing code written using only generic operations

and avoiding virtual aliases continues to work unmodified.

• As described in Section 3.2, unsynchronized operations from

the same thread or CTA to the same address but using dif-

ferent proxies (e.g., 1 and 3) form an intra-thread data

race. Thus, synchronization of such operations will now re-

quire the proxy fence primitive described in the next section.

Note that accesses to aliases of the same physical address

are performed via different proxies.

• Operations from threads in different CTAs to the same ad-

dress but using non-generic proxies (e.g., 5 and 7) must

also be synchronized using proxy fences. For example, even

though both operations may be texture load path operations,

each CTA will (in general) be executing on a different SM

and so the two operations will be performed via two different

unsynchronized texture caches.

5.3 Proxy Fences

As described in Section 4.3, no pre-existing mechanism suffices

to support synchronization of the GPU’s non-coherent paths to

memory. Therefore, we introduce a new synchronization primitive

called a proxy fencewith the syntax shown in Figure 7. As described

in Section 5.2, proxy fences must be inserted to synchronize across

different proxies and/or between non-generic proxies on different

CTAs. Here, we describe the operation and usage of proxy fences.

A proxy fence establishes ordering between memory accesses

that happen via different proxies.More specifically, a fence.proxy.alias
instruction synchronizes across to different generic proxies; i.e., it

re-establishes ordering between two different virtual aliases. Other

proxy fences will be able to synchronize the specified proxy with

1064

ISCA ’22, June 18–22, 2022, New York, NY, USA Daniel Lustig, Simon Cooksey, and Olivier Giroux

the generic proxy. For example, a fence.proxy.texture instruc-
tion would synchronize a CTA’s texture proxy with the generic

proxy.

The intuition for a proxy fence is that it flushes prior generic

accesses and the specified proxy’s prior accesses to the point at

which the two microarchitectural paths reconverge, and then it

invalidates any possibly-stale cache entries in any cache(s) along

those paths. This combination ensures that the prior accesses will

appear ordered before any subsequent accesses. For example, a

fence.proxy.texture in Figure 6would flush a CTA’s outstanding
texture loads and generic operations to the pictured reconvergence

point. Depending on the proxy and the GPU generation, this will

generally be some point in between the L1 and L2 caches. It would

also invalidate any possibly stale entries in the constant cache.

However, it would not need to invalidate any entries in the L1

cache. This is because there is no texture store instruction in PTX,

and hence it is not possible for an L1 cache entry to be stale with

respect to a newer store issued via the texture proxy.

5.4 Usage Examples

Given the semantics described above, to synchronize across prox-

ies, a programmer must insert a proxy fence at the point in a

thread’s execution where the inter-proxy synchronization must

take place. When synchronizing within a single thread, the proxy

fence is simply placed between the instructions in question, as

shown in Figures 8a and 8b. When synchronizing across threads,

there must already be a chain of causality established by one or

more release/acquire pattern pairs. Proxy fences can be inserted

anywhere that a normal load or store could be inserted along that

chain, i.e., before a release operation or after an acquire operation.

The proxy fence must also be inserted in the same CTA where

the non-generic access is taking place. Intuitively, a CTA cannot

synchronize a different SM’s special-purpose caching. This is shown

in Figures 8c through 8e. If multiple distinct proxies are being used,

then one proxy fence must be used for each proxy, and the proxy

fences must be in the correct order, as shown in Figure 8f. The

correct order will in general be to synchronize the first non-generic

proxy with the generic proxy, and then to synchronize the generic

proxy with the second non-generic proxy.

6 FORMALIZATION AND TOOLING

Before deploying NVIDIA’s new proxy memory model, we con-

sidered it important to make sure that the proposed rules integ-

rate cleanly into the existing formalization of the PTX memory

model [27, 37]. Rigorous formalization is a critical tool for ensuring

that no obscure corner cases have been missed. Although memory

model formalization remains a somewhat opaque topic, NVIDIA

considers formal modeling an important prerequisite to the release

of our models. As such, here we describe how our formal model

was extended to account for proxies and then summarize the tool-

ing and analysis infrastructure built to prove to ourselves that the

model is sound.

6.1 Baseline: the PTX 6.0 Axiomatic Memory
Model

PTX is specified as an axiomatic memory model: a load may return

any value that is consistent with the six primary axioms of the

model.

(1) Coherence establishes a consistent ordering among writes

to the same address.

(2) Sequential Consistency per Location handles same-address

synchronization rules.

(3) Causality handles cross-address synchronization rules.

(4) Fence-SC handles restoration of sequential consistency using

fence.seq_cst instructions.
(5) Atomicity handles read-modify-write operations.

(6) No-Thin-Air handles a thorny theoretical corner case [12].

These axioms operate on operations such as reads, writes and

fences, which are the primitives in the model, and on relations

between those primitives. For example, if a read R returns a value

written by a write W, then a reads-from (rf) relation is established

between W and R. In Figure 9, if the release (2) and the acquire (3)

pair were to establish a causality relation between (1) and (4), then

the Causality axiom dictates that the rf relation must be consistent

with the combination of base causality (causebase) and program

order (po) into the causality relation (cause).

The challenge of formalizing an axiomatic memory model is

in specifying precise, sound definitions of relations such as these

and the subtle ways in which they may or may not compose with

each other in order to establish reliable synchronization patterns.

Due to space limitations, and since it was covered in detail in prior

work [27], we do not attempt to re-explore every detail of the PTX

memory model or its axioms. Instead, we focus only on the changes

and their motivation.

6.2 Extending the Formal Model

Here, we describe the updates made to the public NVIDIA PTX

documentation in order to support proxies. Wording from the PTX

specification itself [37] is presented in indented block quotes, and

new text within those indented sections is highlighted in green.

6.2.1 Addresses and Memory Locations. The first change in the

model adds a precise distinction between memory address (virtual)

and memory locations (physical):

§8.2: The address operand contains a virtual address

that gets converted to a physical address duringmemory

access. The physical address and the size of the data

type together define a physical memory location, which

is the range of bytes starting from the physical ad-

dress and extending up to the size of the data type in

bytes.

6.2.2 Moral Strength. Moral strength is a property of a pair of oper-

ations. Informally, it determines whether the accesses are eligible to

form some type of synchronization pattern within the model. Moral

strength now requires that memory operations be performed via the

same proxy. This adjustment is what formally introduces the pos-

sibility of intra-thread data races as described earlier in this paper.

It also establishes that for inter-thread synchronization patterns to

1065

Mixed-Proxy Extensions for the NVIDIA PTX Memory Consistency Model

Industrial Product ISCA ’22, June 18–22, 2022, New York, NY, USA

Thread 0:

st.global.u32 [rd1], 42
fence.proxy.alias
ld.global.u32 r3, [rd2]

Require: r3 == 42

(a) A single-thread example showing alias proxy fence usage.

Thread 0:

st.global.u32 [rd1], 42
fence.proxy.constant
ld.const.u32 r3, [rd2]

Require: r3 == 42

(b) A single-thread example with a constant proxy fence.

Thread 0:

st.global.u32 [rd1], 42
st.release.cta.u32 [rd4], 1
Thread 1 (same CTA):

ld.acquire.cta.u32 r5, [rd4]
fence.proxy.constant
ld.const.u32 r3, [rd2]

Require: IF r5 == 1 THEN r3 == 42

(c) Two-thread example with a constant proxy fence.

Thread 0:

st.global.u32 [rd1], 42
fence.proxy.constant
st.release.cta.u32 [rd4], 1
Thread 1 (same CTA):

ld.acquire.cta.u32 r5, [rd4]
ld.const.u32 r3, [rd2]

Require: IF r5 == 1 THEN r3 == 42

(d) When synchronizing threads are in the same CTA, the proxy fence can
be inserted into either thread.

Thread 0:

st.global.u32 [rd1], 42
fence.proxy.constant
st.release.gpu.u32 [rd4], 1
Thread 1: (different CTA)

ld.acquire.gpu.u32 r5, [rd4]
ld.const.u32 r3, [rd2]

Require: N/A

(e) When synchronizing threads are in different CTAs, the proxy fence
must be inserted in the CTA containing the non-generic operation.

Thread 0:

sust.b.1d.vec.b32.clamp [surf, r1], 42
fence.proxy.surface
fence.proxy.constant
ld.const.u32 r3, [rd2]

Require: r3 == 42

(f) When multiple non-generic proxies are used, proxy fences must be
inserted in the correct order.

Figure 8: Litmus tests. (Not all proxies shown are present in PTX 7.5.) In all examples, rd1 and rd2 are assumed to alias.

st.weak [x], 42;(1)

st.release.cta [y], 1;(2)

ld.acquire.cta r1, [y];(3)

ld.weak r1, [x];(4)

po

po

rf, causebase
rf, cause

Figure 9: An example of axiomatic memory model analysis

be established by pairing a release-pattern with an acquire-pattern,

the release and acquire must also be performed via the same proxy.

§8.7: Two operations are said to be morally strong

relative to each other if they satisfy all of the following

conditions:

(1) The operations are related in program order (i.e, they

are both executed by the same thread), or each op-

eration is strong and specifies a scope that includes

the thread executing the other operation.

(2) Both operations are performed via the same proxy.

(3) If both are memory operations, then they overlap

completely.

6.2.3 Base Causality Order. As its name suggests, base causality

order establishes a basic individual hop of synchronization. The

only change required was to add program order to the list below.

This change by itself has no effect in the pre-existing memory

model without proxies, but its addition facilitates the modeling of

intra-thread data races.

§8.9.5: An operation X precedes an operation Y in base

causality order if:

(1) X precedes Y in program order, or

(2) X synchronizes with Y, or

(3) For some operation Z,

(a) X precedes Z in program order and Z precedes Y

in base causality order, or

(b) X precedes Z in base causality order and Z pre-

cedes Y in program order, or

(c) X precedes Z in base causality order and Z pre-

cedes Y in base causality order.

6.2.4 Proxy-Preserved Base Causality Order. Unlike the prior re-

lations that need only minor modifications, this key relation was

newly created to account for the impact of proxies on base causality

order. It captures the rules laid out in Section 5.2: either matching

proxies must be used, or programmers must insert proxy fences in

the appropriate locations.

1066

ISCA ’22, June 18–22, 2022, New York, NY, USA Daniel Lustig, Simon Cooksey, and Olivier Giroux

Figure 10: A screenshot of the NVLitmus tool developed for

this project and integrated into a locally hosted copy of Com-

piler Explorer [18]

§8.9.5: A memory operation X precedes a memory

operation Y in proxy-preserved base causality order if

X precedes Y in base causality order, and:

(1) X and Y are performed to the same address, using

the generic proxy, or

(2) X and Y are performed to the same address, using

the same proxy, and by the same thread block, or

(3) X and Y are aliases and there is an alias proxy fence

along the base causality path from X to Y.

6.2.5 Causality Order. Finally, causality order must be adjusted to

use the new proxy-aware variant of base causality order.

§8.9.5: Causality order combines base causality order

with some non-transitive relations as follows: An op-

eration X precedes an operation Y in causality order

if:

(1) X precedes Y in proxy-preserved base causality order,

or

(2) For some operation Z, X precedes Z in observation

order, and Z precedes Y in proxy-preserved base

causality order.

In all, these changes reflect the behaviors motivated microarchi-

tecturally in Section 3.1 in an abstract manner, without resorting

to directly exposing microarchitectural details within the program-

ming model.

6.3 Tools to Support Verification

Accompanying the memory model changes are a set of tools de-

veloped to properly analyze the PTX model extensions. The found-

ation for these tools is an extension of the Alloy model developed

for the original PTX memory model in prior work [27]. Alloy is a

relational modeling tool that has been deployed to analyze various

memory models [48] as well as in a range of other domains [20].

The proxy extensions follow the same style and methodology, and

so for space reasons, we do not further elaborate on them here, but

they will be released as artifacts upon paper acceptance.

We also used a variant of the same Alloy model to automatically

generate a set of targeted litmus tests, following prior work [28].

When applied to the proxy memory model, we observed similar

results to what was seen in prior work: reproducing many standard

litmus tests and a number of variants specific to the PTX memory

model. A few new tests were generated with the proxy memory

model features, revealing a smattering of non-standard patterns that

we added to our test suite. This analysis provided evidence that the

new proxy memory model behaved “as expected”. Unfortunately,

the exponential (or worse) runtime of this technique meant we were

unable to generate a fully comprehensive suite of litmus tests. We

found that tests with only six instructions were at the practical limit,

so we remain on the lookout for ways to improve this methodology

moving forward.

Finally, to facilitate the use of the model for analysis by non-

experts, we built a front end called NVLitmus for the formal Alloy

model and integrated it into a locally hosted copy of Compiler

Explorer [18], shown in Figure 10. This allows users to write litmus

tests in a stylized plain text representation and then run NVLitmus

in the browser, without needing to understand the model or even

to install Alloy. NVLitmus has been used successfully by expert

programmers within the company when looking to write non-

trivial inter-thread synchronization code at the PTX level. Some of

these artifacts are publicly available at https://github.com/nvlabs/

mixedproxy.

7 DISCUSSION

7.1 Broader Programming Model Implications

Having a solid memory model foundation is an important step

towards making accelerators and special-purpose cache hierarchies

usable in a general-purpose manner. However, it is only a first

step. Fence insertion is known to be a difficult topic in the world of

memory models and many tools have been developed to assist users

in deciding where to insert fences [1, 4, 14, 25]. The introduction of

proxy fences only makes this topic more challenging. As such, in

order for the model to be used effectively, it must come with a set

of guidelines for how it can be used by both expert and non-expert

programmers.

We do not expect that programmers will mix and match prox-

ies while attempting to write esoteric synchronization patterns.

Indeed, the addition of same-proxy requirements to the definition

of moral strength (Section 6) was in part intended to discourage

such attempts. We expect that the vast majority of use cases will

either be single-threaded or one or more iterations of the standard

four-step “message passing” idiom shown in Figure 9: 1) write data,

2) write-release flag, 3) read-acquire flag until seeing the updated

value, 4) read data. To that end, the litmus tests available with this

paper and in the PTX documentation provide clear guidelines on

where proxy fences should and should not be inserted.

Another important observation is that careful choice of how

to include proxy fences into the definitions of the causality rela-

tions means that the proxy model remains fully composable. In

memory model terminology, the proxy model continues to respect

cumulativity [5]. Once a proxy fence has been used to restore or-

dering across proxies within a CTA, subsequent synchronization

1067

Mixed-Proxy Extensions for the NVIDIA PTX Memory Consistency Model

Industrial Product ISCA ’22, June 18–22, 2022, New York, NY, USA

performed with respect to threads outside of that CTA will observe

the updated values as well.

7.2 Looking Beyond the PTX 7.5 Proxy Memory
Model

Perhaps unsurprisingly, in spite of the complexity added by the

proxy memory model extensions, there are already calls within

NVIDIA to add new features to further accelerate workloads of

commercial interest. Although acceleration of these algorithms is

clearly an important goal for the company, the addition of such

features would add even more complexity to the memory model,

thereby presenting another non-obvious trade-off. Adding new

memory model features in a way that maintains forward- and

backward-compatibility would require once again extending the

formal model and then performing the types of analysis described

in this paper to convince ourselves that the extensions are sound.

Two other properties of the proxy memory model are worth

noting. First, it is designed around the notion of CTA scope be-

ing “special”. This was a design choice rather than a fundamental

theoretical requirement. The accelerators and caching features de-

scribed in Section 3.1 all currently live within each individual SM,

and a CTA’s threads run on the same SM. Threads within a single

CTA often work on common data ranges in a tightly coordinated

manner and have very fast intra-CTA synchronization mechanisms

available. However, if accelerators or special caches were added

at layers of the memory hierarchy outside the SM, then the proxy

model could potentially be extended to permit scoped mixed-proxy

synchronization.

Second, the proxy model does not currently provide way for

users to synchronize across dynamic changes in virtual-to-physical

address mappings. On CPU architectures, this often requires execu-

tion of a special dedicated TLB synchronization “recipe”, as normal

synchronization mechanisms may not flush stale TLB entries [43].

NVIDIA’s Unified Memory page migration mechanism handles its

own TLB synchronization needs, but no other general purpose

mechanism for synchronizing changed mappings is provided.

8 RELATEDWORK

8.1 Standard Memory Models

GPU memory models have been an active area of research in recent

years. Just as in other architectures, the push to formalize GPU

memory models more rigorously is based in part on the identi-

fication of shortcomings in earlier, more informally specified ver-

sions [2, 47]. The GPU industry has since converged around scoped

memory models, following early work on Heterogeneous Race-Free

models [16, 19, 27, 32, 37]. However, researchers have identified

shortcomings in scope-based memory models, such as the chal-

lenges of writing work-stealing runtimes [38, 45]. As such, some

recent work has pushed against scope-based models in favor of

using hardware-assisted protocols such as DeNovo [45].

The approaches taken to formalize GPU memory models follow

directly from a large body of work performed to more rigorously

characterize and then mathematically formalize memory models for

CPUs and for programming languages. The memory models for x86,

ARM, Power, and RISC-V, among others, have been formalized both

axiomatically and operationally [3, 17, 29, 41, 42] and in most cases

the two approaches have been proven equivalent. As such, although

the complexity of highly relaxed models may remain daunting to a

general audience, these models are now reasonably well understood

by experts. Likewise, memory models for C, C++, and Java have

also been formalized in recent years [8, 10, 26, 31].

The formalism applied to memory models has additionally been

backed by more pragmatic techniques based on testing. Issues in the

C++11 memory model were resolved after testing revealed an un-

expected contradiction [26, 30]. Many of the litmus tests capturing

interesting synchronization patterns under memory consistency

models have resulted from manual investigation of weak memory

consistency models [3, 8, 29, 31, 42]. Others have been discovered

through guided automatic generation [5, 13, 28, 49].

8.2 Beyond Standard Memory Models

In spite of the substantial gains made in understanding memory

models over the past decade, many memory-related behaviors re-

main under-specified. There are still open questions regarding the

behavior of syntactic dependencies between instructions [33], of re-

laxed atomic operations and so-called “out-of-thin-air” situations [7,

12], and of memory models for graphics APIs [24]. Solutions to the

thin-air problem are being proposed [9, 11, 21–23, 39, 40, 46], but

none has emerged victorious to date. Other work has found that for

non-multi-copy-atomic memory models, in programs with multiple

memory access sizes it is not always possible to restore sequential

consistency via fences alone [15].

Furthermore, the behavior of many “non-standard” memory op-

erations such as instruction fetches or page table walk accesses is

an area that researchers have only recently started trying to form-

alize [43, 44]. Although most architectures provide standardized

sequences for instruction memory synchronization and TLB shoot-

downs, to date there is no broad consensus for how to completely

formalize such operations in general.

The increasing presence of accelerators tightly coupled to tra-

ditional pipelines is adding yet more non-standard memory paths

that must be considered in modern memory models. This paper

presents one practical specification of how to incorporate acceler-

ators and other forms of special-purpose caching into an otherwise

general-purpose forward-compatible GPU programming model.

9 CONCLUSION

GPU architectures are evolving quickly to meet the needs of work-

loads in important domains such as machine learning. This fast

evolution has resulted in special-purpose accelerators and memory

system behavior becoming increasingly exposed at the architecture

level to the programmer. GPU programming models must keep

up: there is need for continued innovation in the architecture spe-

cifications that dictate the behavior of these workloads in order to

ensure that the general-purpose GPU programming model retains

forward- and backward-compatibility, while still enabling users to

reach peak or near-peak performance.

In this work, we have explained the reasoning behind the devel-

opment of the proxy, an abstraction over various kinds of special-

purpose compute and memory acceleration, and we have described

its integration into the NVIDIA PTX memory consistency model

specification. Proxies fill a gap in the GPU programming model

1068

ISCA ’22, June 18–22, 2022, New York, NY, USA Daniel Lustig, Simon Cooksey, and Olivier Giroux

by allowing architecture features such as texture caches, constant

caches, virtual memory aliases, and accelerators to be incorporated

into the memory model as first-class citizens. Proxy fences provide

a synchronization mechanism that respects the intentionally re-

laxed behavior of the underlying architecture while nevertheless

supporting programmers’ need to write sound, composable code.

The formalization and analysis tools we developed in support of

this new model demonstrate the level of rigor that NVIDIA con-

siders necessary before releasing a memory model publicly. We

believe NVIDIA’s proxy memory model will open the door for a

range of new software interoperability paradigms and hardware

acceleration mechanisms for future GPU generations.

ACKNOWLEDGMENTS

The authors would like to thank David Nellans and the anonymous

reviewers for their helpful feedback.

REFERENCES
[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson,

and Ahmed Rezine. 2012. Counter-example Guided Fence Insertion Under TSO.
In Proceedings of the Eighteenth International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS).

[2] Jade Alglave, Mark Batty, Alistair F. Donaldson, Ganesh Gopalakrishnan, Jeroen
Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson. 2015. GPU Con-
currency: Weak Behaviours and Programming Assumptions. In Proceedings of
the Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[3] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit Sarkar,
Peter Sewell, and Francesco Zappa Nardelli. 2008. The Semantics of Power and
ARM Multiprocessor Machine Code. In Proceedings of the Fourth Workshop on
Declarative Aspects of Multicore Programming (DAMP).

[4] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2017. Don’t Sit
on the Fence: A Static Analysis Approach to Automatic Fence Insertion. In ACM
Transactions on Programming Languages and Systems (TOPLAS), Vol. 39. Issue 2.

[5] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-
elling, Simulation, Testing, and Data-mining for Weak Memory. In Proceedings of
the Thirty-Fifth ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

[6] ARM. 2021. Arm Architecture Reference Manual Armv8, for A-Profile Architecture.
https://developer.arm.com/documentation/ddi0487/gb

[7] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and
Peter Sewell. 2015. The Problem of Programming Language Concurrency Se-
mantics. In Proceedings of the Twenth-Fourth European Symposium on Program-
ming Languages and Systems (ESOP).

[8] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.
Mathematizing C++ Concurrency. In Proceedings of the Thirty-Eighth ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).

[9] Hans-J. Boehm. 2013. Prohibiting “Out of Thin Air” Results in C++14. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3786.htm.

[10] Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ Concurrency
Memory Model. In Proceedings of the Twenty-Ninth International Conference on
Programming Language Design and Implementation (PLDI).

[11] Hans-J. Boehm, Mark Batty, Olivier Giroux, Paul McKenney, Peter Sewell, and
Francesco Zappa Nardelli. 2013. Specifying the Absence of “Out of Thin Air”
Results. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3710.html.

[12] Hans-J. Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding Out-of-
thin-air Results. In Proceedings of the Workshop on Memory Systems Performance
and Correctness (MSPC).

[13] James Bornholt and Emina Torlak. 2017. Synthesizing Memory Models from
Framework Sketches and Litmus Tests. In Proceedings of the Thirty-Eighth ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI).

[14] Xing Fang, Jaejin Lee, and Samuel P Midkiff. 2003. Automatic Fence Insertion
for Shared Memory Multiprocessing. In Proceedings of the Seventeenth Annual
International Conference on Supercomputing (SC).

[15] Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget,
Kathryn E. Gray, Ali Sezgin, Mark Batty, and Peter Sewell. 2017. Mixed-size
Concurrency: ARM, POWER, C/C++11, and SC. In Proceedings of the Forty-Fourth
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL).

[16] HSA Foundation. 2015. HSA Platform System Architecture Specifica-
tion. http://www.hsafoundation.com/html/Content/PRM/Topics/06_Memory/

memory_model.htm.
[17] RISC-V Foundation. 2022. The RISC-V Instruction Set Manual, Volume I: Unpriv-

ileged ISA. https://riscv.org.
[18] Matt Godbolt. 2022. Compiler Explorer. https://godbolt.org/
[19] Derek R Hower, Blake A Hechtman, Bradford M Beckmann, Benedict R Gaster,

Mark D Hill, Steven K Reinhardt, and David A Wood. 2014. Heterogeneous-Race-
Free Memory Models. In Proceedings of the Nineteenth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

[20] Daniel Jackson. 2002. Alloy: A Lightweight Object Modelling Notation. ACM
Transactions on Software Engineering and Methodology 11, 2, 256–290.

[21] Alan Jeffrey and James Riely. 2016. On Thin Air Reads Towards an Event Struc-
tures Model of Relaxed Memory. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS).

[22] Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton
Podkopaev. 2022. The Leaky Semicolon: Compositional Semantic Dependencies
for Relaxed-Memory Concurrency. In Proceedings of the 49th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL).

[23] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer.
2017. A Promising Semantics for Relaxed-memory Concurrency. In Proceedings
of the Forty-Fourth ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL).

[24] Khronos Vulkan Working Group. 2018. Vulkan 1.1.92 - A Specification. https:
//www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html.

[25] Michael Kuperstein, Martin Vechev, and Eran Yahav. 2012. Automatic Inference
of Memory Fences. In Proceedings of the Tenth Conference on Formal Methods in
Computer Aided Design (FMCAD).

[26] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.
2017. Repairing Sequential Consistency in C/C++11. In Proceedings of the Thirty-
Eighth ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI).

[27] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. 2019. A Formal Ana-
lysis of the NVIDIA PTX Memory Consistency Model. In Proceedings of the
Twenty-Third ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS).

[28] Daniel Lustig, AndrewWright, Alexandros Papakonstantinou, and Olivier Giroux.
2017. Automated Synthesis of Comprehensive Memory Model Litmus Test Suites.
In Proceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[29] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave,
Scott Owens, Rajeev Alur, Milo M. K. Martin, Peter Sewell, and Derek Williams.
2012. An Axiomatic Memory Model for POWER Multiprocessors. In Proceedings
of the Twenty-Fourth International Conference on Computer Aided Verification
(CAV).

[30] Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and
Margaret Martonosi. 2016. Counterexamples and Proof Loophole for the
C/C++ to POWER and ARMv7 Trailing-Sync Compiler Mappings. In ArXiv,
Vol. abs/1611.01507.

[31] JeremyManson,William Pugh, and Sarita V. Adve. 2005. The Java MemoryModel.
In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL).

[32] Luc Maranget and Jade Alglave. 2015. Towards a Formalization of the HSA
Memory Model in the cat Language. https://hal.inria.fr/hal-01413251

[33] Paul E. McKenny, Alan Jeffrey, Ali Sezgin, and Tony Tye. 2016. P0422: Out-of-
Thin-Air Execution is Vacuous. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2016/p0422r0.html.

[34] MLCommons. 2021. General MLPerf Submission Rules v0.3. https://docs.nvidia.
com/cuda/parallel-thread-execution/index.html

[35] NVIDIA. 2017. NVIDIA Tesla V100 GPU Architecture. http://images.nvidia.com/
content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.

[36] NVIDIA. 2021. CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html

[37] NVIDIA. 2021. PTX ISA :: CUDA Toolkit Documentation. https://docs.nvidia.com/
cuda/parallel-thread-execution/index.html

[38] Marc S. Orr, Shuai Che, Ayse Yilmazer, Bradford M. Beckmann, Mark D. Hill,
and David A. Wood. 2015. Synchronization Using Remote-Scope Promotion. In
Proceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[39] Marco Pavoitti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and
Mark Batty. 2020. Modular Relaxed Dependencies in Weak Memory Concurrency.
In Proceedings of the Twenty-Ninth European Symposium on Programming (ESOP).

[40] Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Semantics for
Relaxed Atomics That Permits Optimisation and Avoids Thin-air Executions. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL).

[41] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter
Sewell. 2018. Simplifying ARM Concurrency: Multicopy-atomic Axiomatic and
Operational Models for ARMv8. In Proceedings of the Forty-Fifth ACM SIGPLAN

1069

Mixed-Proxy Extensions for the NVIDIA PTX Memory Consistency Model

Industrial Product ISCA ’22, June 18–22, 2022, New York, NY, USA

Symposium on Principles of Programming Languages (POPL).
[42] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-

nus O. Myreen. 2010. X86-TSO: A Rigorous and Usable Programmer’s Model for
x86 Multiprocessors. In Communications of the ACM, Vol. 53. Issue 7.

[43] Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte,
Richard Grisenthwaite, and Peter Sewell. 2022. Relaxed virtual memory in
Armv8-A. In Proceedings of the Thirty-First European Symposium on Programming
(ESOP).

[44] Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-
Pharabod, Luc Maranget, and Peter Sewell. 2020. ARMv8-A System Semantics:
Instruction Fetch in Relaxed Architectures. In Proceedings of the Twenty-Ninth
European Symposium on Programming (ESOP).

[45] Matthew D Sinclair, Johnathan Alsop, and Sarita V Adve. 2015. Efficient GPU
Synchronization Without Scopes: Saying No to Complex Consistency Models.
In Proceedings of the Forty-Eighth International Symposium on Microarchitecture
(MICRO).

[46] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2017. Chasing Away
RAts: Semantics and Evaluation for Relaxed Atomics on Heterogeneous Systems.
In Proceedings of the Forty-Fourth Annual International Symposium on Computer
Architecture (ISCA).

[47] Tyler Sorensen and Alastair F. Donaldson. 2016. Exposing Errors Related to Weak
Memory in GPU Applications. In Proceedings of the Thirty-Seventh ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI).

[48] JohnWickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. 2017.
Automatically Comparing Memory Consistency Models. In Proceedings of the
Forty-Fourth ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL).

[49] John Wickerson, Mark Batty, Tyler Sorensen, and George A Constantinides. 2017.
Automatically Comparing Memory Consistency Models. In Proceedings of the
Forty-Fourth ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL).

1070

