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Abstract. We present a denotational semantics for weak memory con-
currency that avoids thin-air reads, provides data-race free programs
with sequentially consistent semantics (DRF-SC), and supports a com-
positional refinement relation for validating optimisations. Our semantics
identifies false program dependencies that might be removed by compiler
optimisation, and leaves in place just the dependencies necessary to rule
out thin-air reads. We show that our dependency calculation can be
used to rule out thin-air reads in any axiomatic concurrency model, in
particular C++. We present a tool that automatically evaluates litmus
tests, show that we can augment C++ to fix the thin-air problem, and
we prove that our augmentation is compatible with the previously used
compilation mappings over key processor architectures. We argue that
our dependency calculation offers a practical route to fixing the long-
standing problem of thin-air reads in the C++ specification.

Keywords: Thin-air problem · Weak memory concurrency · Compiler
Optimisations · Denotational Semantics · Compositionality

1 Introduction

It has been a longstanding problem to define the semantics of programming
languages with shared memory concurrency in a way that does not allow un-
wanted behaviours – especially observing thin-air values [8,7] – and that does
not forbid compiler optimisations that are important in practice, as is the case
with Java and Hotspot [30,29]. Recent attempts [16,11,25,15] have abandoned
the style of axiomatic models, which is the de facto paradigm of industrial spec-
ification [8,2,6]. Axiomatic models comprise rules that allow or forbid individual
program executions. While it is impossible to solve all of the problems in an
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axiomatic setting [7], abandoning it completely casts aside mature tools for au-
tomatic evaluation [3], automatic test generation [32], and model checking [23],
as well as the hard-won refinements embodied in existing specifications like C++,
where problems have been discovered and fixed [8,7,18]. Furthermore, the indus-
trial appetite for fundamental change is limited. In this paper we offer a solution
to the thin-air problem that integrates with existing axiomatic models.

The thin-air problem in C++ stems from a failure to account for dependen-
cies [22]: false dependencies are those that optimisation might remove, and real
dependencies must be left in place to forbid unwanted behaviour [7]. A single
execution is not sufficient to discern real and false dependencies. A key insight
from previous work [14,15] is that event structures [33,34] give us a simultane-
ous overview of all traces at once, allowing us to check whether a write is sure
to happen in every branch of execution. Unfortunately, previous work does not
integrate well with axiomatic models, nor lend itself to automatic evaluation.

To address this, we construct a denotational semantics in which the meaning
of an entire program is constructed by combining the meanings of its subcom-
ponents via a compositional function over the program text. This approach can
be particularly amenable to automatic evaluation, reasoning and compiler certi-
fication [19,24], and fits with the prevailing axiomatic approach.

This paper uses this denotational approach to capturing program dependen-
cies to explore the thin air problem, resulting in a concrete proposal for fixing
the thin-air problem in the ISO standard for C++.

Contributions. There are two parts to the paper. In the first, we develop a
denotational model of program dependency and build metatheory around it.
The model uses a relatively simple account of synchronisation, but it demon-
strates separation between the calculation of dependency and the enforcement
of synchronisation. In the second, we evaluate the dependency calculation by
combining it with fully-featured axiomatic models RC11 [18] and IMM [26].

The denotational semantics has the following advantages:

1. It is the first thin-air solution to support fork/join (§2.2).
2. It satisfies the DRF-SC property for a compositional model (§5): programs

without data races behave according to sequential consistency.
3. It comes with a refinement relation that validates program transformations,

including the optimisation that makes Hotspot unsound for Java [30,29], and
a list of others from the Java Causality Tests [27] (§7).

4. It is shown to be equivalent to a global semantics that first performs a
dependency calculation and then applies an axiomatic model.

5. An example in Section 10 illustrates a case in which thin-air values are
observable in the current state-of-the-art models but forbidden in ours.

We adopt the dependency calculation from the global semantics of point 4 as the
basis of our C++ model. We establish the C++ DRF-SC property described in
the standard [13] (§9.1) and we provide several desirable properties for a solution
to the thin-air problem in C++:
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5. We show that our dependency calculation is the first that can be applied
to any axiomatic model, and in particular the RC11 and IMM models that
cover C++ concurrency (§8).

6. Our augmented IMM model is provably implementable over x86, Power,
ARMv8, ARMv7 and RISC-V, with the compiler mappings provided by the
IMM [26] (§8.1).

7. These augmented models of C++ are the first that solve the thin-air problem
to have a tool that can automatically evaluate litmus tests (§11).

1.1 Modular Relaxed Dependency by example

To simplify things for now, we will attach an Init program to the beginning
of each example to initialise all global variables to zero. Doing this makes the
semantics non-compositional, but it is a natural starting place and aligns well
with previous work in the area. Later, after we have made all of our formal
definitions, we will see why the Init program is not necessary.

For now, consider a simple programming language where all values are booleans,
registers (ranging over r) are thread-local, and variables (ranging over x, y) are
global. Informally, an event structure for a program consists of a directed graph
of events. Events represent the global variable reads and writes that occur on all
possible paths that the program can take. This can be built up over the program
as follows: each write generates a single event, while each read generates two –
one for each possible value that could be read. These read events are put in
conflict with each other to indicate that they cannot both happen in a single
execution, this is indicated with a zig-zag red arrow between the two events.
Additionally, the event structure tracks true dependencies via an additional re-
lation which we call semantic dependencies (dp). These are yellow arrows from
read events to write events.

For example, consider the program

(r1 := x; y := r1) (LB1)

that reads from a variable x and then writes the result to y. The interpretation
of this program is an event structure depicted as follows:

R x 0
2

W y 0
3

R x 1
4

W y 1
5

Each event has a unique identifier (the number attached to the box). The
straight black arrows represent program order, the curved yellow arrows indicate
a causal dependency between the reads and writes, and the red zigzag represents
a conflict between two events. If two events are in conflict, then their respective
continuations are in conflict too.

If we interpret the program Init; LB1, as below, we get a program where
the Init event sets the variables to zero.
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Init
1

R x 0
2

W y 0
3

R x 1
4

W y 1
5

In the above event structure, we highlight events {1, 2, 3} to identify an exe-
cution. The green dotted arrow indicates that event 2 reads its value from event
1, we call this relation reads-from (rf). This execution is complete as all of its
reads read from a write and it is closed w.r.t conflict-free program order.

We interpret the following program similarly,

(r2 := y; x := r2) (LB2)

leading to a symmetrical event structure where the write to x is dependent on
the read from y.

The interpretation of Init; (LB1 ‖ LB2) gives the event structure where
(LB1) and (LB2) are simply placed alongside one another.

Init
1

R x 0
2

W y 0
3

R x 1
4

W y 1
5

R y 0
6

W x 0
7

R y 1
8

W x 1
9

The interpretation of parallel composition is the union of the event structures
from LB1 and LB2 without any additional conflict edges. When parallel compos-
ing the semantics of two programs, we add all rf-edges that satisfy a coherence
axiom. Here we present an axiom that provides desirable behaviour in this ex-
ample (Section 4 provides our model’s complete axioms).

(dp ∪ rf) is acyclic

The program Init; (LB1 ‖ LB2) allows executions of the following three
shapes.

Init
1

R x 0
2

W y 0
3

R y 0
6

W x 0
7

Init
1

R x 0
2

W y 0
3

R y 0
6

W x 0
7

Init
1

R x 0
2

W y 0
3

R y 0
6

W x 0
7
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Note that in this example, we are not allowed to read the value 1 – reading
a value that does not appear in the program is one sort of thin-air behaviour, as
described by Batty et al. [7]. For example, the execution {1, 4, 5, 8, 9} does not

satisfy the coherence axiom as 4
dp−→ 5

rf−→ 8
dp−→ 9

rf−→ 4 forms a cycle.
We now substitute (LB2) with the following code snippet

r1 := y; x := 1 (LB3)

where the value written to the variable x is a constant. Its generated event
structure is depicted as follows

R x 0
a

W y 1
b

R x 1
c

W y 1
d

In this program, for each branch, we can reach a write of value 1 to location
y. Hence, this will happen no matter which branch is chosen: we say b and d
are independent writes and we draw no dependency edges from their preceding
reads.

Consider now the program (LB3) in parallel with LB1 introduced earlier in
this section. As usual, we interpret the Init program in sequence with (LB1 ‖
LB3) as follows:

Init
1

R x 0
2

W y 0
3

R x 1
4

W y 1
5

R y 0
a

W x 1
b

R y 1
c

W x 1
d

The resulting event structure is very similar to that of (LB1 ‖ LB2), but the
executions permitted in this event structure are different. The dependency edges
calculated when adding the read are preserved, and now executions {1, 2, 3, a, b}
and {1, a, b, 4, 5} are allowed. However, this event structure also contains the
execution in which d is independent.

In the execution {d rf−→ 4
dp−→ 5

rf−→ c} there is no rf or dp edge between
d and c that can create a cycle, hence this is a valid complete execution in
which we can observe x = 1, y = 1. Note that the Init is irrelevant in the
consistency of this execution.

Modularity. It is worthwhile underlining the role that modularity plays here.
In order to compute the behaviour of (LB1 ‖ LB2) and (LB1 ‖ LB3) we did
not have to compute the behaviour of LB1 again. In fact, we computed the

semantics of LB1, LB2 and LB3 in isolation and then we observed the behaviour
in parallel composition.
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Thin-air values. The program (LB1 ‖ LB2) is a standard example in the weak
memory literature called load buffering. If event 5 or 9 were allowed in a complete
execution, that would be an undesirable thin-air behaviour: there is no value 1
in the program text, nor does any operation in the program compute the value
1. The program (LB1 ‖ LB3) is similar, but now contains a write of value 1 in
the program text, so this is no longer a thin-air value. Note that the execution
given for it is not sequentially consistent, but nonetheless a weak memory model
needs to allow it so that a compiler can, for example, swap the order of the
two commands in LB3, which are completely independent of each other from its
perspective.

2 Event Structures

Event structures will form the semantic domain of our denotational semantics
in Section 5. Our presentation follows the essential ideas of Winskel [33] and is
further influenced by the treatment of shared memory by Jeffrey and Riely [15].

2.1 Background

A partial order (E,v) is a set E equipped with a reflexive, transitive and an-
tisymmetric relation v. A well-founded partial order is a partial order that has
no infinite decreasing chains of the form · · · v ei−1 v ei v ei+1 · · · .

A prime event structure is a triple (E,v,#). E is a set of events, v is a
well-founded partial order on E and # is a conflict relation on E. # is binary,
symmetric and irreflexive such that, for all c, d, e ∈ E, if c#d v e then c#e. We
write Con(E) for the set of conflict-free subsets of E, i.e. those subsets C ⊆ E
for which there is no c, d ∈ C such that c#d.

Notation. We use E to range over (prime/labelled/memory) event structures,
and also the event set contained within, when there is no ambiguity. We also use
E for event structures.

A labelled event structure (E,v,#, λ), over a set of labels Σ, is a prime event
structure together with a function λ : E → Σ which assigns a label to an event.
We make events explicit using the notation {e : σ} for λ(e) = σ. We sometimes
avoid using names and just write the label σ when there is no risk of confusion.

W x 0
1

R x 0
2

W y 1
3

R x 1
4

Consider the labelled event structure formed by the
set {1, 2, 3, 4}, where the order relation is defined such
that 1 v 2 v 3 and 1 v 4, the conflict relation is defined
such that 2#4 and 3#4, and the labelling function is
defined such that λ(1) = (W x 0), λ(2) = (R x 0), λ(3) =
(W y 1) and λ(4) = (R x 1). The event structure is
visualised on the left (we elide conflict edges that can be
inferred from order).

Given labelled event structures E1 and E2 define the product labelled event
structure E1×E2 , (E,v,#, λ). E is E1∪E2, assuming E1 and E2 to be disjoint,
v is v1 ∪ v2, # is #1 ∪#2 and λ is λ1 ∪ λ2.
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The coproduct labelled event structure E1 + E2 is the same as the product,
except that the conflict relation # 1is #1 ∪#2 ∪ {E1 × E2} ∪ {E2 × E1}. We
can use a similar construction for the co-product of an infinite set of pairwise-
disjoint labelled event structures, indexed by I: we take infinite unions on the
underlying sets and relations, along with extra conflicts for every pair of indices.
Where the Ei are not disjoint, we can make them so by renaming with fresh
event identifiers. In particular, we will need the infinite coproduct

∑
i∈I E with

as many copies of E as the cardinality of the set I, and all the events between
each copy in conflict. Each of these copies will by referred to as E i.

For a labelled event structure E0 and an event e, where e 6∈ E0, define the
prefix prime event structure, e•E0, as a prime event structure (E,v,#, λ) where
E equals E0 ∪ {e}, v equals v0 ∪ ({e} × E), and # equals #0.

2.2 The fork-join event structure

Our language supports parallel composition nested under sequential composi-
tion, so we will need to model spawning threads and a subsequent wait for their
termination. To support this, we define the fork-join composition of two labelled
event structures, E1 ? E2. First we define the leaves, ↓ (E), as the v-maximal ele-
ments of E . Let I be the set of maximal conflict-free subsets of ↓ (E1). Intuitively,
each event set in I corresponds to the last events4 of one way of executing the
concurrent threads in E1. We then generate a fresh copy of E2 for each of the
executions: E3 =

∑
i∈I E2.

Now E1; E2 , (E,v,#, λ) such that E is E1∪E3, # is #1∪#3, λ is λ1∪λ3,
v is the transitive closure of

v1 ∪ v3 ∪
⋃
E∈I
{(e, e′) | e ∈ E ∧ e′ ∈ EE2 }

The set of events, E, is the set E1 plus all the elements from the copies in
E3. The order, v, is constructed by linking every event in the copy EE2 , with
all the events in the set E, plus the obvious order from E1 and the order in the
local copy EE2 . Finally, the conflict relation is the union of the conflict in E1 and
E3.

3 Coherent event structure

The signature of labels, Σ, is defined as follows:

Σ = ({R,W} × X × V) + {L}+ {U}

where (W x v) ∈ Σ and (R x v) ∈ Σ are the usual write and read operations
and L, U are the lock and unlock operations respectively.

4 We assume that there are no infinite increasing v-chains in E1.
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A coherent event structure is a tuple (E,S,`,≤) where E is a labeled event
structure. S is a set of partial executions, where each execution is a tuple compris-
ing a maximal conflict-free set of events, together with an intra-thread reads-from
relation rfi and an extra-thread rfe, a dependency relation dp, and a partial
order on lock/unlock events lk. The justification relation, `, is a relation be-
tween conflict-free sets and events. Finally, the preserved program order, ≤X , is
a restriction of the program order, v, for events on the same variable. ≤L is
the restriction of program order on events related in program order with locks
or unlocks. Finally, we define rf to be rfe ∪ rfi and ≤ to be ≤X ∪ ≤L. For a
partial execution, X ∈ S, we denote its components as lkX , rfX and dpX .

Justification, `, collects dependency information in the program and is used
to calculate dpX . For a conflict-free set C and an event e, we say C justifies
e or e depends on C whenever C ` e. We collect dependencies between events
modularly in order to identify the so-called independent writes which will be
introduced shortly.

For a given partial execution, X, we define the order hbX as the reflexive
transitive closure of (v ∪ lkX). A coherent event structure contains a data race
if there exists an execution X, with two events on the same variable x, at least
one of which is a write, that are not ordered by hbX . A coherent event structure
is data-race-free if it does not contain any data race. A racy rfX-edge is when

two events w and r are racy and w
rfe−−→X r. Note that rfi edges cannot ever be

racy. We now define a coherent partial execution.

Definition 1 (Coherent Partial Execution). A partial execution X is co-
herent if and only if:

1. (≤L ∪ lkX ∪ dpX ∪ rfeX) is acyclic, and

2. if (w : W x v)
rf−→X (r : R x v) there are no (e : R x v′) or (e : W x ) such

that w
hbX−−−→ e

hbX−−−→ r with v 6= v′.

A complete execution X is an execution where all read events r have a write

w that they read from, i.e. w
rf−→X r.

4 Weak memory model

Central to the model is the way it records program dependencies in ` and dp.
Justification, `, records the structure of those dependencies in the program that
may be influenced by further composition. As we shall see, composing programs
may add or remove dependencies from justification: for example, composing a
read may make later writes dependent, or the coproduct mechanism, introduced
shortly, may remove them. In some parts of the program, e.g. inside locked
regions, dependencies do not interact with the context. In this case, we freeze
the justifications, using them to calculate dp. Following a freeze, the justification
relation is redundant and can be forgotten – dp can be used to judge which
executions are coherent.
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Freezing. Here we define a function freeze which takes a justification C ` (w :

W x v) and gives the corresponding dependency relation (r : R x v)
dp−→ (w :

W x v) iff r ∈ C. We lift freeze to a function on an event structure as follows:

freeze(E1, S1,`1,≤1) , (E1, S, ∅,≤1) (1)

where S contains all the executions

(X1, lkX1
, (dpX1

∪ dp),rfX1
)

where for each write, wi ∈ X1, we choose a justification so that C1 `1 w1, ..., Cn `1
wn covers all writes in X1. Furthermore, with dp defined as follows:

dp = (
⋃

i∈{1,···n}

freeze(Ci ` wi))

X1 must be a coherent execution. We prove that for a coherent execution there
always exists a choice of write justifications that freeze into dependencies to form
a coherent execution.

We will illustrate freezing of the program,

r1 := x; r2 := t; if(r1 == 1 ∨ r2 == 1){y := 1}

whose event structure is as follows:

R x 0
1

R x 1
2

R t 0
3

R t 1
4

R t 0
5

R t 1
6

W y 1
7

W y 1
8

W y 1
9

The rules later on in this section will provide us with justifications {(6 : R t 1)} `
(9 : W y 1) and {(2 : R x 1)} ` (9 : W y 1) (but not the independent justification
` (9 : W y 1)). So in this program there are two minimal justifications of
(9 : W y 1). The result of freezing is to duplicate all partial executions for each

choice of write justifications. In this case, we get an execution containing 2
dp−→ 9

and another one containing 6
dp−→ 9.

4.1 Prepending single events

When prepending loads and stores, we model forwarding optimisations by up-
dating the justification relation: e.g. when prepending a write, (w : W x 0), to
an event structure where {(r : R x 0)} ` w′, write forwarding satisfies the read
of the justification, leaving an independently justified write, ` w′.
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W x 0
1

R x 0
2

R x 1
3

R x 0
4

R x 1
5

R x 0
6

R x 1
7

W z 1
8

W z 1
9

Forwarding is forbidden if there
exists e in E such that w ≤ e ≤
r, as in the example on the left.
In this example we do not for-
ward 1 to 6. The rules of this
section give us that {1, 3, 6} ` 9:
we have preserved program or-
der over the accesses of x, 1 ≤
3 ≤ 6, and we do not forward
across the intervening read 3.

Read Semantics We now define the semantics of read prepending as follows:

(r : R x v) • (E1, S1,`1,≤1) , ((r : R x v) • E1, S,`,≤) (2)

where preserved program order ≤ is built straightforwardly out of ≤1, ordering
locks, unlocks and same-location accesses, and S is defined as the set of all
(X ∪ {r}, lkX ,rfX ,dpX), where X is a partial execution of S1 and ` is the
smallest relation such that for all C `1 e we have

C1 ∪ {r} \ LF ` e

with LF being the “Load Forwarded” set of reads, i.e.the set of reads consecu-
tively following the matching prepended one:

LF = {(r′ : R x v) ∈ C1 | @e′, r ≤X e′ ≤X r′}

This allows for load forwarding optimisations and coherence is satisfied by
construction.

Write Semantics The write semantics are then defined as follows:

(w : W x v) • (E1, S1,`1,≤1) , ((w : W x v) • E1, S,`,≤) (3)

where ≤ is built as in the read rule and S contains all coherent executions of
the form,

(X ∪ {w}, lkX , (rfX ∪ rfi),dpX)

where X ∈ S1, and w
rfi−−→ r for any set of matching reads r in E1 such that

condition (1.2) of coherence is satisfied. Adding rfi edges leaves condition (1.1)
satisfied.

The justification relation ` is the smallest upward-closed relation such that
for all C `1 e:

1. ` w
2. C \ SF ∪ {w} ` e if there exists e′ ∈ C s.t. w ≤X e′
3. C \ SF ` e otherwise
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with SF being the Store Forwarding set of reads, i.e.the set of reads that we are
going to remove from the justification set for later events that are matching the
write we are prepending. This is defined as follows:

SF = {(r′ : R x v) | @e, w ≤X e ≤X r′}

When prepending a write to an event structure, we add it to justifications
that contain a read to the same variable. Failing to do so would invalidate the
DRF-SC property. We provide an example in Section 6.3, but we need to com-
plete the definition of the semantics first, in particular, we need to explain first
how the writes are lifted. This is coming in the next section (Section 4.2).

4.2 Coproduct semantics

The coproduct mechanism is responsible for making writes independent of prior
reads if they are sure to happen, regardless of the value read. It produces the
independent writes that enabled relaxed behaviour in the example in Section 1.

In the definition of coproduct we use an upward-closure of justification to
enable the lifting of more dependencies. Whenever C ` e we define ↑ (C) as the
upward-closed justification set, i.e. D ` e if C ` e, D is a conflict-free lock-free
set with C ⊆ D, such that for all e′ ∈ D if e′′ is an event such that e′′ ≤ e′ then
e′′ ∈ D.

Now we define the coproduct operation. If E1 is a labelled event structure of
the form (r1 : R x v1) • E′1 and, similarly, E2 is of the form (r2 : R x v2) • E′2,
the coproduct of event structures is defined as,

(E1, S1,`1,≤1) + (E2, S2,`2,≤2) , (E1 + E2, S1 ∪ S2, (`1 ∪ `2 ∪ `),≤)

where whenever {r1} ∪ C1 `1 (w : W y v) and {r2} ∪ C2 `2 (w′ : W y v) then if
the following conditions hold, we have D′ ` w1 and D′′ ` w2:

1. there exists a D′ ∈ ↑ (C1) that is isomorphic to a D′′ ∈ ↑ (C2), that is, there
exist f : D′ → D′′ that is a λ-preserving and ≤X -preserving bijection,

2. there is no event e in D′ such that r1 ≤X e

The example of Section 1 illustrates the application of condition (1) of co-
product. Recall the event structures of (LB1) and (LB3) respectively.

R x 0
2

W y 0
3

R x 1
4

W y 1
5

R x 0
a

W y 1
b

R x 1
c

W y 1
d

In each case, the event structure is built as the coproduct of the conflicting
events. In (LB3), prior to applying coproduct we have {a} ` b and {c} ` d. The
writes have the same label for both read values so, taking C1 and C2 to be empty,
coproduct makes them independent, adding the independent writes ` b and ` d.
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In contrast, the values of writes 3 and 5 differ in (LB1), so the coproduct has
{2} ` 3 and {4} ` 5. When ultimately frozen, the justifications of (LB1) will
produce the dependency edges (2, 3) and (4, 5) as described in Section 1.

As for condition (2), if there is an event in the justification set that is ordered
in ≤X with the respective top read, then the top read cannot be erased from the
justification. Doing so would break the ≤X link.

When having value sets that contain more than two values, we use
∑
v∈V to

denote a simultaneous coproduct (rather than the infinite sum). More precisely,
if we coproduct the event structures E0, E1, · · · , En in a pairwise fashion as
follows,

(· · · (E0 + E1) + · · · ) + Ev

we would get liftings that are undesirable. To see this, it suffices to consider the
program,

if(r==3){x := 2}{x := 1}
where the write to x of 1 is independent for a coproduct over values 1 and 2, but
not when considering the event structure following (R x 3).

4.3 Lock semantics

When prepending a lock, we order the lock before following events in ≤ and we
freeze the justifications into dependencies. By freezing, we prevent justifications
from events after the lock from interacting with newly appended events. This
disables optimisations across the lock, e.g. store and load forwarding.

We define the semantics of locks as follows,

(l : L) • (E1,`1, S1,≤1) , ((l : L) • E1, ∅, S,≤) (4)

where ≤X remains unchanged and (E′1, ∅, S′1,≤′1) = freeze(E1,`1, S1,≤1), where
S contains all partial executions of the form,

(X ∪ {l}, (lkX ∪ lk),dpX ,rfX)

where X ∈ S′1 and the lock order lk is such that for all lock or unlock event

l′ ∈ X, l
lk−→ l′. Finally, ≤L is ≤L ′

1 extended with the lock ordered before all
events in E′1.

The semantics for the unlock is similar.

4.4 Parallel composition

We define the product operation as follows. Note that this operation freezes the
constituent denotations before combining them, erasing their respective justifi-
cation relations. This choice prevents the optimisation of dependencies across
forks and it makes thread inlining optimisations unsound, as they are in the
Promising Semantics [16] and the Java memory model [21].

(E1, S1,`1,≤1)× (E2, S2,`2,≤2) , (E1 × E2, S, ∅,≤1 ∪ ≤2)
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where, S are all coherent partial executions of the form,

(X1 ∪X2, (lkX1
∪ lkX2

∪ lk), (dpX1
∪ dpX2

), (rfX1
∪ rfX2

∪ rfe))

where X1 ∈ SF1 , X2 ∈ SF2 and

– freeze(E1, S1,`1,≤1) = (E1, S
F
1 , ∅,≤1)

– freeze(E2, S2,`2,≤2) = (E2, S
F
2 , ∅,≤2)

Furthermore, lk is constrained so that (lkX1
∪ lkX2

∪ lk) is a total order over
the lock/unlock operations such that no lock/unlock operation is introduced
between a lock and the next unlock on the same thread. Finally, we add all

(w : W x v)
rf−→ (r : R x v) edges such that the execution satisfies condition

(1.1) of coherence1 and such that w belongs to SF1 and r belongs to SF2 or vice
versa.

4.5 Join Semantics

We define the join composition as follows:

(E1, S1,`1,≤1) ? (E2, S2,`2,≤2) , (E1 ? E2, S,`1,≤) (5)

where ≤ is built as in the read rule and S are all executions of the form

(X1 ∪X2, (lkX1 ∪ lkX2 ∪ lk), (dpX1 ∪ dpX2), (rfX1 ∪ rfX2 ∪ rfi))

where X1 ∈ S1 and X2 ∈ S2 with X1 and X2 conflict-free. Lock order lk orders
all lock/unlock of X1 before all lock/unlock of X2 and w

rfi−−→ r whenever w ∈ X1

and r ∈ X2 such that the execution is still coherent.

5 Language and Semantics

We consider an imperative language that has sequential and parallel composition,
and mutable shared memory.

Definition 2 (Language).

B := M = M | B ∧B | B ∨B | ¬B M := n | r
P ::= skip | r := x | x :=M | P1; P2 | P1 ‖ P2 | if(B){P1}{P2}

| while(B){P} | L | U

We have standard boolean expressions, B, and expressions, M , represented by
natural numbers, n, or registers, r. Finally we have the set of command state-
ments, P , where skip is the command that performs no action, r := x reads
from a global variable and stores the value in r, x :=M computes the expression
M and stores its value to the global variable x, P1; P2 is sequential composition,

1 Note that condition (1.2) does not need to be checked.
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and P1 ‖ P2 is parallel composition. We have standard conditional statements,
while loops, locks and unlocks. Moreover, a program P is lock-well-formed5 if on
every thread, every lock is paired with a following unlock instruction and vice
versa, and there is no lock or unlock operation between pairs.

A register environment,R → V, is a function from the set of local registers,R,
to the set of values, V. A continuation is a function taking a register environment,
R → V, to an event structure, E . We write ∅ as a short-hand for λρ.∅, the
continuation returning the empty event structure.

We interpret the syntax defined above into the semantic domain defined in
Section 4. In Figure 1, we define J·K as a function which takes a step-index n,
a register environment ρ, and a continuation κ, and returns a memory event
structure.

The interpretation function J·K is defined first by induction on the step-index
and then by induction on the syntax of the program. When n = 1 the inter-
pretation gives the empty event structure (undefined). Otherwise we proceed by
induction on the structure of the program. skip is just the continuation applied
to the environment. A read is interpreted as a set of conflicting read events for
each value v attached with a continuation applied to the environment where the
register is updated with v.

A write is interpreted as a write with a following continuation. We interpret
sequencing by interpreting the second program and passing it on to the interpre-
tation of the first as a continuation. Parallel composition is the interpretation
of the two programs with empty continuations passed to the × operator. The
conditional statement is interpreted as usual. For interpreting the while-loops
we use the induction hypothesis on the step-index [9].

When parallel composing two threads, we want to forbid any reordering with
events sequenced before or after the composition (as thread inlining would do).
To forbid this local reordering we surround this composition with two lock-unlock
pairs.

5.1 Compositionality

We define the language of contexts inductively in the standard way.

Definition 3 (Context).

C ::= [−] | P; C | C; P | (C ‖ P ) | (P ‖ C)
| if(B){C}{P} | if(B){P}{C} | while(B){C}

In the base case, the context is a hole, denoted by [−]. The inductive cases follow
the structure of the program syntax. In particular, a context can be a program
P in sequence with a context, a context in sequence with a program P and so
on. For a context C we denote C[P ] by the inductively defined function on the
context C that substitutes the program P in every hole.

5 Jeffrey and Riely [15] adopt the same restriction. We conjecture that modelling
blocking locks [4] would lift it without affecting the DRF-SC theorem.
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JP K1 ρ κ = ∅
JskipKn ρ κ = κ(ρ)

Jr := xKn ρ κ = Σv∈V (R x v • κ(ρ[r 7→ v]))

Jx :=MKn ρ κ = (W x JMKρ) • κ(ρ)

JP1; P2Kn ρ κ = JP1Kn ρ (λρ.JP2Kn ρ κ)

JLKn ρ κ = (L • E1,`1)

where (E1,`1) = κ(ρ)

JUKn ρ κ = (U • E1,`1)

where (E1,`1) = κ(ρ)

JP1 ‖ P2Kn ρ κ = JL;UKn ρ κ′

where κ′ = (λρ.(JP1Kn ρ ∅)× (JP2Kn ρ ∅) ? (JL; UKn ρ κ))

Jif(B){P1}{P2}Kn ρ κ =

{
JP1Kn ρ κ JBKρ = T

JP2Kn ρ κ JBKρ = F

Jwhile(B){P}Kn ρ κ =

{
JP;while(B){P}K(n−1) ρ κ JBKρ = T

JskipKn ρ κ JBKρ = F

Fig. 1: Semantic interpretation

The following lemma shows that the semantics preserve context application.
This falls out from the fact that the semantic interpretation is compositional,
that is, we define every constructor in terms of its subcomponents.

Lemma 1 (Compositionality). For all programs P1, P2, if JP1K = JP2K then
for all contexts C, JC[P1]K = JC[P2]K.

The proof is a straightforward induction on the context C and it follows from the
fact that semantics is inductively defined on the program syntax. The attentive
reader may note that to prove JP1K = JP2K in the first place we have to assume n,
ρ and κ and prove JP1Kn ρ κ = JP2Kn ρ κ. It is customary however in denotational
semantics to have programs denoted by functions that are equal if they are equal
at all inputs [31].

5.2 Data Race Freedom

Data race freedom ensures that we forbid optimisations which could lead to
unexpected behaviour even in the absence of data races. We first define the
closed semantics for a program P . For all n, the semantics of P , namely JP K is
JInit(P )Kn λx.0 λρ.∅, where Init(P ) is the program that takes the global vari-
ables in P and initialises them to 0. We now establish that race-free programs
interpreted in the closed semantics have sequentially consistent behaviour.

DRF semantics. Rather than proving DRF-SC directly, we prove that race-free
programs behave according to an intermediate semantics L·M. This semantics
differs from J·K in only two ways: program order is used in the calculation of
coherence instead of preserved program order, and no dependency edges are
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recorded (as these are subsumed by program order). More precisely, the seman-
tics is calculated as in Figure 1 but we check that (rfe ∪ lk ∪ v) is acyclic.

Note that race-free executions of the intermediate semantics L·M satisfy the
constraints of the model of Boehm and Adve [10], and the definition of race is
the same between the two models. Boehm and Adve prove that in the absence
of races, their model provides sequential consistency.

The DRF-SC theorem is stated as follows.

Theorem 1. For any program P , if LP M is data race free then every execution
D in JP K is a sequentially consistent execution, i.e. D is in LP M.

6 Tests and Examples

In this section, four examples demonstrate aspects of the semantics: the first,
recognises a false dependency, the second forbids unintended behaviour allowed
by Jeffrey and Riely [15], the third motivates the choice to add forwarded writes
to justification, and the last shows how we support an optimisation forbidden
by Java but performed by the Hotspot compiler.

6.1 LB+ctrl-double

In the first example, from Batty et al. [7], the compiler collapses conditionals to
transform P1 to P2.

P1 P2

r1 := x;

if(r1==1){
y := 1

} else {
y := 1

}

−→ r1 := x;

y := 1

R x 0
a

W y 1
b

R x 1
c

W y 1
d

Coproduct ensures that the denotations of P1 and P2 are identical, with the
event structure above, together with justification ` b and ` d. From composi-
tionality (Lemma 1) and equality of the denotations, we have equal behaviour
of P1 and P2 in any context, and the optimisation is allowed.

6.2 Jeffery and Riley’s TC7

The next test is Java TC7. The outcome where r1, r2 and r3 all have value 1 is
forbidden by Jeffrey and Riely [15, Section 7], but allowed in the Java Causality
Test Cases [27].

T1 T2

r1 := z;

r2 := x;

y := r2

∥∥∥∥∥
r3 := y;

z := r3;

x := 1

(TC7)
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As noted by Jeffrey and Riely [15], the failure of this test “indicates a failure to
validate the reordering of independent reads”.

R z 0
1

R x 0
2

R x 1
3

W y 0
4

W y 1
5

R z 1
6

R x 0
7

R x 1
8

W y 0
9

W y 1
10

In the event structure of T1 above, the justification relation is constructed accord-
ing to Section 5. In particular, the rule for preapending reads (Definition 4.1)
gives us {1, 2} `T1 4 and {1, 3} `T1 5 on the left-hand side, and {6, 7} `T1 9
and {6, 8} `T1

10 on the right. When composing the left and right sides, the
coproduct rule (Section 4.2) makes four independent links, namely, {2} `T1

4,
{3} `T1

5, {7} `T1
9, and {8} `T1

10. This is because, at the top level, for
both branches, we can choose a write with the same label that is dependent on
the same reads (plus the top ones on z). More precisely, on the left-hand side
C1 = {1, 2} is such that C1 `T1 4, and on the right-hand side C2 = {6, 7} is such
that C2 `T1

9. When the top events, 1 and 6 respectively, are removed, these
contexts become isomorphic (C1[1] ∼= C2[6]). Hence, {2} `T1

4 and {7} `T1
9,

and {3} `T1
5 and {8} `T1

10.

R y 0
11

R y 1
12

W z 0
13

W z 1
14

W x 1
15

W x 1
16

Now consider the event structure for the thread
T2. Here we have two independent writes, namely `T2

(15 : W x 1) and `T2
(16 : W x 1), arising in the

coproduct from justifications {11} `T2 (15 : W x 1)
and {12} `T2 (16 : W x 1). Notice that by Definition 3,
we do not add the writes 13 and 14 to the justification
sets of any W x 1, and because they write different
values to z depending on the value of y, we have the
dependencies {11} `T2 13 and {12} `T2 14.

When parallel composing, we connect the rf-edges
that respect coherence. Thus we obtain the execution

{16
rf−→ 8

dp−→ 10
rf−→ 12

dp−→ 14
rf−→ 6}, which is coherent, allowing the outcome

with r1, r2 and r3 all 1 as desired.

6.3 Adding writes to justifications

In Definition 3.2, we state that for any given justification, if there is an event
in the justification set that is related via ≤X with the write we are prepending,
then that write must be in the justification set as well.

To see why we made this choice consider the following program,
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x := 1;

r1 := y;

if(r1==0){
x := 0; r2 := x; if(r2==1){z := 1}

} else {
r3 := x; if(r3==1){z := 1}
}

∥∥∥∥∥ r3 := z;

if(z==1){y := 1}

and its associated event structure,

W x 1
0

R y 0
1

R y 1
2

W x 0
3

R x 0
4

R x 1
5

R x 0
6

R x 1
7

W z 1
8

W z 1
9

R z 0
10

R z 1
11

W y 1
12

We focus on the interpretation of the left-hand side thread. By Definition 3.2,
because {7} ` 9 and 3 ≤X 7, the event (3 : W x 0) gets inserted in the justifi-
cation set, leading to the justification {3, 7} ` 9. On the other branch, up until
the coproduct of the read on y, we have {5} ` 8. At this point, the justifications
{7} ` 9 and {5} ` 8 are not lifted because 9 requires 3 as well. Event 3 may not
be removed because of the condition in the write prepending rule. Without this
condition 3 would not be necessary to justify 9, yielding the lifting of the link

{5} ` 8. This would also cause the execution {0 rf−→ 5
dp−→ 8

rf−→ 11
dp−→ 12

rf−→ 2}
to be coherent due to the lack of a dependency between 2 and 5.

This execution is not sequentially consistent, but under SC, the program is
race free. Without writes in justifications, the model would violate the DRF-SC
property described in Section 5.2.

6.4 Java memory model, Hotspot.

Finally, we discuss redundant read after read elimination, an optimisation per-
formed by the Hotspot compiler but forbidden by the Java memory model. It
is the first optimisation in the following sequence from Ševč́ık and Aspinall [30,
Figure 5], used to demonstrate that the Java memory model is too strict, and
unsound with respect to the observable behaviour of Sun’s Hotspot compiler.
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T3 T2 T1

r2 := y;

if(r2== 1)

{r3 := y; x := r3}
else

{x := 1}

−→ r2 := y;

x := 1;
−→ x := 1;

r2 := y;

Consider the event structures of the unoptimised T3 and optimised T1.

R y 0
1

R y 1
3

R y 0
4

R y 1
6

W x 1
2

W x 0
5

W x 1
7

−→

W x 1
10

R y 0
11

R y 1
12

The optimisation removes the apparently redundant pair of reads (4, 6), then
reorders the now-independent write. This redundancy is represented in justifi-
cation: when prepending the top read of y to the right-hand side of the event
structure, the existing justification 6 ` 7 is replaced by 3 ` 7. When coproduct is
applied, this matches with justification 1 ` 2, leading to the independent writes
` 2 and ` 7. In a weak memory context however, a parallel thread could write a
value to y between the two reads, thereby changing the value written to x. For
this reason, we keep event 4 in the denotation and create the dependency edge

4
dp−→ 5.
Despite exhibiting the same behaviour here, the denotations of T3 and T2 do

not match. We establish that the optimisation is sound in any context in the
next section.

7 Refinement

We have shown in Section 5.1 that our semantics enjoys a compositionality
property: if we can prove that two programs have the same semantics (w.r.t
set-theoretical equality) then they cannot be distinguished by any context. We
also explained how equality is too strict, as it does not allow us to relate all
programs that ought to be deemed semantically equivalent. Our Java Hotspot
compiler example in Section 6 shows that the program T3 is in practice optimised
to T2 and then to T1. However, it is clearly not true that JT1Kn ρ κ is a subset of
JT2Kn ρ κ.

In this section we present a coarser grained relation, which we call refinement
(4). This relation permits the optimisations we want, but remains sound w.r.t.
the intuitive notion of observational equivalence, and that it is closed under
context application in the same way as equality.
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To show soundness we define Observational Refinement (4Obs) which cap-
tures the intuitive notion of program equivalence: one program is a permissible
optimisation of another if it does not increase set of observable behaviours, de-
fined here as changes to values of observed variables. The definition identifies
related executions and compares the ordering of observable events, recognising
that adding happens-before edges restricts behaviour. We then define a Refine-
ment relation and show this relation is a subset of observational refinement. This
is formally stated in the following lemma:

Lemma 2 (Soundness of Refinement (4⊆4Obs)). For all P1 and P2, if
JP1KTn ρ ∅ 4 JP2KTn ρ ∅ then JP1KTn ρ ∅ 4obs JP2KTn ρ ∅

Note that the refinement relation is defined over a tweaked version of the
semantics, J·KT , which a variant of J·K in which the registers are explicit in the
event structure.

Finally we show 4 is compositional :

Theorem 2 (Compositionality of Refinement (4)). For all programs P1

and P2 and ns, if for all ρ, JP1KTn ρ ∅ 4 JP2KTn ρ ∅ then for all contexts C, ρ, κ and

κ′ such that κ 4 κ′ we have that JC[P1]KTn ρ κ 4 JC[P2]KTn ρ κ′

8 Showing implementability via IMM

In this section we show that our calculation of relaxed dependencies can be easily
reused to solve the thin-air problem in other state-of-the-art axiomatic models,
drawing the advantages of these models over to ours. In particular, we augment
the IMM and RC11 models of Podkopaev et al. [26]. We adopt their language,
given below. It covers C++ atomics, fences, fetch-and-add and compare-and-
swap operations but excludes locks. Note that locks are implementable using
compare and swap operations.

M := n | r
B := M = M | B ∧B | B ∨B | ¬B
T ::= skip | r :=oR x | x :=oW M | T1; T2

| if(B){P1}{P2} | while(B){P}
| fenceoF | r := FADDoR,oW

oRMW
(x,M)

| CASoR,oW
oRMW

(x,M,M)

P ::= T1 ‖ · · · ‖ Tn
oR ::= rlx | acq

oW ::= rlx | rel

oF ::= acq | rel | acqrel | sc

oRMW ::= normal | strong

First we provide a model, written (for a program P ) as JP KMRD+IMM, that
combines our relaxed dependencies to the axiomatic model of IMM, here written
as JP KIMM. We will make these definitions precise shortly. We then show that
JP KMRD+IMM is weaker than JP KIMM, making JP KMRD+IMM implementable over
hardware architectures like x86-TSO, ARMv7, ARMv8 and Power. Secondly, we
relax the RC11 axiomatic model by using our relaxed dependencies model MRD
to create a new model JP KMRD-C11, and show this model weaker than the RC11
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model. We argue that the mathematical description of JP KMRD-C11 is lightweight
and close to the C++ standard, it would therefore require minimal work to
augment the standard with the ideas presented in this paper.

To prove implementability over hardware architectures we define a pre-execution
semantics, where the relaxed dependency relation dp is calculated along with the
data and control dependencies from IMM. To combine our model with IMM, we
redefine the ar relation such that it is parametrised by an arbitrary relation
which we put in place of the relations (data ∪ ctrl). ar(data ∪ ctrl) equals the
original axiom ar and ar(dp) is the same axiom where dp is put in place of
data ∪ ctrl.

We define the executions in JP KMRD+IMM as the maximal conflict-free sets
such that ar(dp) is acyclic, and executions in JP KIMM as the maximal conflict-
free sets such that ar(data ∪ ctrl) is acyclic.

8.1 Implementability

We can now state and prove that the MRD model is implementable over IMM,
which gives us that MRD is implementable over x86-TSO, ARMv7, ARMv8,
Power and RISC-V by combining our result with the implementability result of
IMM.

Theorem 3 (MRD+IMM is weaker than IMM). For all programs P by the
IMM model,

JP KMRD+IMM ⊇ JP KIMM

9 Modular Relaxed Dependencies in RC11 : MRD-C11

We refer to the RC11 [18] model, as specified in Podkopaev et al. [26]. We call this
model JP KRC11. While JP KRC11 forbids thin-air executions, it is not weak enough:
it forbids common compiler optimisations by imposing that (v ∪ rf) is acyclic.
We relax this condition by similarly replacing v with our relaxed dependency
relation dp, this time calculated on our preserved program order relation (≤).
We call this model JP KMRD-C11. Mathematically, this is done by imposing that
(dp ∪ rf) is acyclic.

At this point, we prove the following lemma

Lemma 3 (Implementability of MRD-C11). For all programs P ,

JP KMRD-C11 ⊇ JP KRC11

To show this it suffices to show that there always exists dp ⊆ v. This is
straightforward by induction on the structure of P , observing that the only

place where dependencies go against v is when hoisting a write in the coproduct
case. However, in the same construction we always preserve the dependencies
coming from the different branches of the structure which are, by inductive
hypothesis, always agreeing with program order.
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9.1 MRD-C11 is DRF-SC

We show that MRD-C11 validates the DRF-SC theorem of the C++ standard [13,
§6.8.2.1 paragraph 20].

Theorem 4 (MRD-C11 DRF-SC). For a program whose atomic accesses are
all SC-ordered, if there are no SC-consistent executions with a race over non-
atomics, then the outcomes of P under MRD-C11 coincide with those under SC.

Sketch proof. In the absence of races and relaxed atomics, the no-thin-air guar-
antee of RC11 is made redundant by the guarantee of happens-before acyclicity
shared by RC11 and MRD-C11. The result follows from this observation, lemma 3
and theorem 4 from Lahav et al. [18].

10 On the Promising Semantics and weakestmo

In this section we present examples that differentiate the Promising Semantics
and weakestmo from our MRD and MRD-C11 models.

First, we show that MRD correctly forbids the out-of-thin-air behaviour in the
litmus test Coh-CYC from Chakraborty and Vafeiadis [11]. The test, given below,
differentiates Promising and weakesmo: only the latter avoids the outcome
r1 = 3, r2 = 2 and r3 = 1.

x := 2;

r1 := x; \\ 3

if(r1!= 2){y := 1}
‖

x := 1;

r2 := x; \\ 2

r3 := y; \\ 1

if(r3!= 0){x := 3}
MRD correctly forbids this outcome: it identifies a dependency on the left-

hand thread from the read of 3 from x to the write y := 1, and on the right-hand
thread from the read of 1 from y to the write x := 3. The desired outcome then
has a cycle in dependency and reads-from, and it is forbidden.

Chakraborty and Vafeiadis ascribe the behaviour to “a violation of coherence
or a circular dependency”, and include specific machinery to weakestmo that
checks for global coherence violations at each step of program execution. These
global checks forbid the unwanted outcome.

The Promising Semantics, on the other hand, can make promises that are not
sensitive to coherence order, and therefore allows the above outcome erroneously.

In Coh-CYC, enforcing coherence ordering at each step in weakestmo was
enough to forbid the thin-air behaviour, but it is not adequate in all cases. The
example below features an outcome that Promising and weakestmo allow, and
that MRD-C11 and MRD forbid. It demonstrates that cycles in dependency can
arise without violating coherence in weakestmo.

z := 1 ‖ y := x ‖ if(z!= 0){x := 1}{r0 := y; x := r0; a := r0}
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The program is an adaptation6 of a Java test, where the the unwanted out-
come represents a violation of type safety [20]. Observing the thin-air behaviour
where a = 1 in the adaptation above is the analogue of the unwanted outcome in
the original test. If in the end a = 1, then the second branch of the conditional
in the rightmost thread must execute. It contains a read of 1 from y, and a
dependent write of x := 1. On the middle thread there is a read of 1 from x, and
a dependent write of y := 1. These dependencies form the archetypal thin-air
shape in the execution where a = 1. MRD correctly identifies these dependencies
and the outcome is prohibited due to its cycle in reads-from and dependency.

The a = 1 outcome is allowed in the Promising Semantics: a promise can be
validated against the write of x := 1 in the true branch of the righthand thread,
and later switched to a validation with x := r0 from the false branch, ignoring
the dependency on the read of y.

In the previous example, Coh-CYC, a stepwise global coherence check caused
weakestmo to forbid the unwanted behaviour allowed by Promising, but that
machinery does not apply here. weakestmo allows the unwanted outcome, and
we conjecture that this deficiency stems from the structure of the model. De-
pendencies are not represented as a relation at the level of the global axiomatic
constraint, so one cannot check that they are consistent with the dynamic exe-
cution of memory, as represented by the other relations. Adopting a coherence
check in the stepwise generation of the event structure mitigates this concern for
Coh-CYC, but not for the test above.

In contrast, MRD does represent dependencies as a relation, allowing us to
check consistency with the rf relation here. The axiom that requires acyclicity
of (dp ∪ rf) forbids the unwanted outcome, as desired.

11 Evaluating MRD-C11 with the MRD-er tool

MRD-C11 is the first weak memory model to solve the thin-air problem for C++
atomics that has a tool for automatically evaluating litmus tests. Our tool, MRD-
er, evaluates litmus tests under the base model, RC11 augmented with MRD, and
IMM augmented with MRD. It has been used to check the result of every litmus
test in this paper, together with many tests from the literature, including the
Java Causality Test cases [7,11,15,16,18,25,26,27].

When evaluating whether a particular execution is allowed for a given test, a
model that solves the thin-air problem must take other executions of the program
into account. For example, the semantics of Pichon-Pharabod et al., having
explored one execution path, may ultimately backtrack [25]. Jeffrey and Riely
phrase their semantics as a two player game where at each turn, the player
explores all forward executions of the program [15]. At each operational step, the
Promising Semantics [16] has to run forwards in a limited local way to validate

6 James Riely, Alan Jeffrey and Radha Jagadeesan provided the precise example pre-
sented here [28]. It is based on Fig. 8 of Lochbihler [20], and its problematic execution
under Promising was confirmed with the authors of Promising.
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that promised writes will be reached. The invisible events of Chakraborty et
al. [11] are used to similar effect.

In MRD-C11, it is the calculation of justification that draws in information
from other executions. This mechanism is localised, it avoids making choices
about the execution that prune behaviours, and it does not require backtracking.
MRD-C11 acts in a “bottom-up” fashion, and modularity ensures that justifica-
tions drawn from the continuation need not be recalculated. These properties
have supported the development of MRD-er: automation of the model requires
only a single pass across the program text to construct the denotation.

12 Discussion

Four recent papers have presented models that forbid thin-air values and permit
previously challenging compiler optimisations. The key insight from these papers
is that it is necessary to consider multiple program executions simultaneously.
To do this, three of the four [15,25,11] use event structures, while the Promising
Semantics [16] is a small-step operational semantics that explores future traces
in order to take a step.

Although the Promising Semantics [16] is quite different from MRD, its mech-
anism for promising focuses on future writes, and MRD has parallels in its cal-
culation of independent writes. Note also that both Promising’s certification
mechanism and MRD’s lifting are thread-local.

The previous event-structure-based models are superficially similar to MRD,
but all have a fundamentally different approach from ours: Pichon-Pharabod and
Sewell [25] use event structures as the state of a rewriting system; Jeffrey and
Riely [14,15] build whole-program event structures and then use a global mech-
anism to determine which executions are allowed; and Chakraborty et al. [11]
transform an event structure using an operational semantics. In contrast, we fol-
low a more traditional approach [33] where our event structures are used as the
co-domain of a denotational semantics. Further, Jeffrey and Riely [14,15] and
Pichon-Pharabod and Sewell [25] do not cover a significant subset set of C++
relaxed concurrency primitives.

MRD does not suffer from known problems with existing models. As noted
by Kang et al. [16], the Pichon-Pharabod and Sewell model produces behaviour
incompatible with the ARM architecture. The Jeffrey and Riely model forbids
the reordering of independent reads, as demonstrated by Java Causality Test 7
(see section 6.2). The Promising semantics allows the cyclic coherence ordering of
the problematic Coh-CYC example [11]. weakestmo allows the thin-air outcome
in the Java-inspired test of Section 10. In all four cases MRD provides the correct
behaviour.

MRD is also highly compatible with the existing C++ standard text. The
dp relation generated by MRD can be used directly in the axiomatic model to
forbid thin-air behaviour. We are working on standards text with the ISO C++
committee based on this work, and have a current working paper with them [5].
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The notion in C++ that data-race free programs should not exhibit observ-
able weak behaviours goes back to Adve and Hill [1], and formed the basis of
the original proposal for C++ [10]. This was formalised by Batty et al. [8] and
adopted into the ISO standard. Despite the pervasiveness of DRF-SC theorems
for weak memory models, these have remained whole-program theorems that
do not support breaking a program into separate DRF and racy components.
Our DRF theorem for our denotational model demonstrates a limited form of
modularity that merits further exploration.

Other denotational approaches to relaxed concurrency have not tackled the
thin-air problem. Dodds et al. [12] build a denotational model based on an
axiomatic model similar to C++. It forms the basis of a sound refinement relation
and is used to validate data-structures and optimisations. Their context language
is too restrictive to support a compositional semantics, and their compromise
to disallow thin-air executions forbids important optimisations. Kavanagh and
Brookes [17] provide a denotational account of TSO concurrency, but their model
is based on pomsets and suffers from the same limitation as axiomatic models [7]:
it cannot be made to recognise false dependencies.

Future Work. We envisage a generalised theorem that would, on augmentation
with MRD, extend an axiomatic DRF-SC proof to a proof that applies to the
augmented model.

The ISO have struggled to define memory order::consume [13]. It is intended
to provide ordering through dependencies that the compiler will not optimise
away. The semantic dependency relation calculated by MRD identifies just these
dependencies, and may support a better definition.

Finally, where we have used a global semantics to provide a full C++ model,
it would be interesting to extend the denotational semantics to also cover all of
C++, thereby allowing reasoning about C++ code in isolation from its context.

13 Conclusions

We have used the relatively recent insight that to avoid thin-air problems, a
semantics should consider some information about what might happen in other
program executions. We codify that into a modular notation of justification,
leading to a semantic notion of independent writes, and finally of dependency
(dp). We demonstrate the effectiveness of these concepts in three ways. One,
we define a denotational semantics for a weak memory model, show it supports
DRF-SC, and build a compositional refinement relation strong enough to verify
difficult optimisations. Two, we show how to use dp with other axiomatic models,
supporting the first optimal implementability proof for a thin-air solution via
IMM, and showing how to repair the ISO C++ model. Three, we build a tool
for executing litmus tests allowing us to check a large number of examples.
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