
Rust for Morello: Always-On Memory Safety, Even
in Unsafe Code
Sarah Harris #

University of Kent, Canterbury, UK

Simon Cooksey # Ñ

University of Kent, Canterbury, UK

Michael Vollmer # Ñ

University of Kent, Canterbury, UK

Mark Batty #Ñ

University of Kent, Canterbury, UK

Abstract
Memory safety issues are a serious concern in systems programming. Rust is a systems language
that provides memory safety through a combination of a static checks embodied in the type system
and ad hoc dynamic checks inserted where this analysis becomes impractical. The Morello prototype
architecture from ARM uses capabilities, fat pointers augmented with object bounds information,
to catch failures of memory safety. This paper presents a compiler from Rust to the Morello
architecture, together with a comparison of the performance of Rust’s runtime safety checks and the
hardware-supported checks of Morello. The cost of Morello’s always-on memory safety guarantees is
39% in our 19 benchmark suites from the Rust crates repository (comprising 870 total benchmarks).
For this cost, Morello’s capabilities ensure that even unsafe Rust code benefits from memory safety
guarantees.

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its
engineering → Software safety; Software and its engineering → Object oriented languages

Keywords and phrases Compilers, Rust, Memory Safety, CHERI

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.39

Category Experience Paper

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.25
Software (Source Code): https://github.com/kent-weak-memory/rust

archived at swh:1:dir:966327cc0ecb3fb4d2196b6f0912d775392fafa5

Funding This work has been supported by the EPSRC under the DSbD Software Ecosystem grant
programme EP/X021173/1.

Acknowledgements This paper was greatly improved thanks to the responses of anonymous reviewers.
We extend our thanks to Jessica Clarke for her invaluable help with CHERI LLVM.

1 Introduction

Low-level programming entails delicate use of memory in a setting where common mistakes
can lead to serious bugs and security vulnerabilities in critical code. Memory safety is the
absence of these errors – where only correctly allocated regions of memory are accessed and
freed. Unsafe uses of memory are the most critical software flaws today, they create security
vulnerabilities, and they are widespread: out-of-bounds writes are the most dangerous
security flaw in the Mitacs Common Weakness Enumeration [8]; Microsoft found that 70%

V1.1

A
rt
ifa

cts Available

ECOOP

© Sarah Harris, Simon Cooksey, Michael Vollmer, and Mark Batty;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 39; pp. 39:1–39:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:S.E.Harris@kent.ac.uk
mailto:simon@graymalk.in
https://graymalk.in
https://orcid.org/0000-0001-9365-9717
mailto:M.Vollmer@kent.ac.uk
http://recurial.com
https://orcid.org/0000-0002-0496-8268
mailto:M.J.Batty@kent.ac.uk
https://www.kent.ac.uk/computing/people/3126/batty-mark
https://doi.org/10.4230/LIPIcs.ECOOP.2023.39
https://doi.org/10.4230/DARTS.9.2.25
https://doi.org/10.4230/DARTS.9.2.25
https://github.com/kent-weak-memory/rust
https://archive.softwareheritage.org/swh:1:dir:966327cc0ecb3fb4d2196b6f0912d775392fafa5;origin=https://github.com/kent-weak-memory/rust;visit=swh:1:snp:3be4a2043eedb892938587ca34b33825fa21a854;anchor=swh:1:rev:40cea16d006ab860815ca582910b778074648c0b
https://doi.org/10.4230/DARTS.9.2.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


39:2 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

of the security bugs in Windows were as a result of unsafe use of memory [23]; and in the
Chromium browser 36% of bugs are caused by use-after-free errors [33], with a further 33%
stemming from other unsafe uses of memory [33].

It is possible to automatically enforce memory safety, avoiding all the attendant bugs and
security flaws. This enforcement comes at a cost, however, and how exactly the cost is levied
is a design choice. In this paper we compare the runtime performance of the mechanisms
that enforce memory safety in Rust and in the Morello architecture, and ultimately combine
them, improving the coverage of Rust’s memory safety guarantee.

Rust provides a guarantee of memory safety to all well-typed code. Much of the cost of
this guarantee is handled by a static analysis in the type system, but it also uses runtime
checks when proving safety statically would be costly or impossible. One can forgo the
safety guarantee and its checks by designating a block of code as unsafe: memory accesses
within this block are not required to pass the full rigour of the type system. Unsafe code is
used sparingly for interoperability with non-Rust components and for performance. unsafe
annotations highlight code where memory errors can survive.

Rust alleviates memory errors in common code while remaining flexible enough to support
systems programming through the provision of unsafe blocks. Rust imposes two costs:
programmers must adhere to a more restrictive type system, and there are runtime costs to
support the safety guarantee. The combination of safety, pragmatism, and performance is
why Rust is now the official second language of the Linux kernel alongside C [24].

Morello is a prototype ARM processor that provides capabilities: fat pointers, augmented
with permissions and bounds information. Morello processors use this metadata to enforce
memory safety at run time, halting programs when safety is violated – for example if a
program makes an out-of-bounds memory access. Programs that protect every memory
access are described as Purecap, but one can forgo the safety checks by accessing memory in
Hybrid mode. In contrast with Rust, full-scale systems programming is possible in Purecap
mode: there are Purecap Morello ports of BSD, Linux and Android [34, 4, 3]. Programming
in Purecap mode ensures memory safety from the first, albeit with the possibility of runtime
errors where safety would otherwise be violated. Further development effort improves the
stability of the system.

The safety guarantees provided by Rust and Morello are subtly different. Morello’s capabilities
track only approximate bounds information (see §2.3), recording the size of objects as a
floating-point number; Rust applies compiler optimizations to the runtime checks that it
emits, removing unnecessary checks and improving performance. Even so, Rust and Morello
provide similar guarantees that may be used in a complementary way. Purecap-Morello will
check pointers are used safely even in unsafe blocks, for example. This is where Rust and
capability hardware mesh neatly, where Rust cannot validate the safety of memory use the
underlying Morello hardware can.

In this paper we will explore the interplay between the Morello prototype hardware and the
Rust programming language with a focus on runtime performance. We find the performance
cost of always-on hardware memory safety checks to be quite high but not prohibitively so,
and the design philosophies of Rust’s static memory safety guarantees and Morello’s dynamic
memory safety to be well-matched. This comparison will also serve as a way to benchmark
the real-world performance of improvements to the Morello architecture in the context of
cutting edge memory-safe programming practices. We present the following contributions:



S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:3

1. A Rust compiler that targets the Purecap- and Hybrid-mode Morello prototype capability
hardware (§3).

This includes a reasoned choice for the semantics of usize on a machine where pointers
are not just integers (§3.1).

2. A ported Rust standard library with fixes to incorporate capabilities (§3.6).
3. A performance analysis of Rust on Morello (§4, §5):

Our benchmark suite of 19 crates from the Rust crates repository (§4.6, Appendix A).
Analysis of the benefits of bounds checking elision on capability hardware (§5.1).
Comparison of Rust on Hybrid-Morello to Rust on Purecap-Morello (§5.2).

4. Our artefacts which will be made public upon publication.

2 Background

For a language to provide practical memory safety, it must present a usable interface to
the programmer and have acceptable performance. Memory safety comes with a number of
requirements:
1 values must be initialized before reading, especially pointers,
2 values must not be accessed after deallocation,
3 reads and writes must be within the bounds of an object’s memory allocation,
4 values must be deallocated exactly once.

There are a number of approaches to enforcing these requirements: from garbage collection
as used by Java, Go, OCaml and many others; assorted static and dynamic validators – Rust
is one such system, using linear types, lifetimes and dynamic bounds checking; and now
hardware schemes like Morello.

2.1 Rust
Rust [21] is a relatively young programming language, version 0.1 was released in 2012 [27],
and is notable for incorporating a number of features geared to providing memory safety,
covering the desiderata above. Minimising runtime cost while providing powerful features to
programmers is a central design aim for current Rust [35], so the majority of these features
are applied statically during compilation. There are however still some cases where it is
regarded as impractical to infer bounds statically.

The most relevant features to Rust’s memory safety are [18, 28]:
uninitialised values are not normally1 allowed 1 ;
move semantics, the Drop trait, and references prevent access to deallocated values 2 ;
array and slice indices are the only pointer arithmetic normally1 available, and these are
bounds checked at runtime 3 ;
move semantics, the Drop trait, and careful API design protects against double free 4 ;
move semantics and the Drop trait provide some protection against memory leaks by
making the default behaviour that objects are freed when their lifetime ends 4 , but
can be defeated by functions like std::mem::forget() and Box::leak() and by other
issues2;

The most important of these safety features is the combination of move semantics, the
Drop trait, references, and lifetimes, which together provide much of Rust’s memory safety
guarantees.

1 In unsafe it is possible to break these conditions, but this is not the default.
2 Reference counted pointers can leak if used improperly, and some edge cases in exception handling can

cause Drop not to execute.

ECOOP 2023



39:4 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

2.1.1 Move and Drop

The simplest way to allocate memory in Rust is to use the stack. This works much like C,
with a value being allocated memory on entry to a block, and deallocated on exit when the
stack frame is popped:

struct Data { a: i32, b: i32 }
fn automatic_memory() {

// data automatically allocated on the stack here:
let data = Data{a: 1, b: 2};
// ...
// data falls off stack here

}

Large values and data with a lifetime that doesn’t match that of a scope require dynamic
memory allocation, which in C would be provided via malloc() and free(). In Rust this is
provided using a combination of move semantics and the Drop trait. Drop allows a type to
provide a method that will be called automatically when an instance of it leaves scope, which
means that memory allocations can be managed semi-automatically by so-called “smart
pointers”. The simplest implementation of this in Rust is the standard library type Box,
which allocates memory on the heap when instantiated and uses Drop to ensure that it will
be deallocated when the Box leaves scope. The Box value itself acts as a handle, tracking the
lifetime of the allocation and providing access to the allocated memory while remaining a
technically separate value.

fn heap_memory() {
// data allocated on the heap here:
let data = Box::new(Data{a: 1, b: 2});
// ...
// Box falls out of scope here, heap allocation automatically freed

}

Move semantics expand the utility of this approach by allowing the Box to be moved to
a different name or out of scope, while preventing it from being duplicated or deallocated,
which might otherwise cause the allocation to be freed twice or left to leak 4 .

fn inner_scope() -> Box<Data> {
// data allocated on the heap here:
let data = Box::new(Data{a: 1, b: 2});
// ...
data // data is moved out of the function here

}
fn moved_box() {

// data moved to outer scope here:
let data = inner_scope();
// ...
let new_name = data; // data moved to new_name here
assert!(data.a == 1); // compiler error: use of moved value: `data`
assert!(new_name.a == 1); // ok
// data falls out of scope here, heap allocation automatically freed

}



S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:5

Box covers a wide range of use cases, and the same general design can be used to build
more complex, more powerful tools to cover more demanding problems. The standard library
provides a number of options, including dynamically resizeable arrays via Vec, and reference
counted allocations via Rc using the same mechanism.

2.1.2 References and lifetimes
While move semantics and Drop cover many uses of dynamic memory allocation, values
can only be in one place at a time, and the resulting passing around can quickly become
inconvenient. The solution to this problem is Rust’s reference types. These behave similarly
to ordinary pointers, but enforce extra rules that are checked by the compiler 1:

a reference must point to a value, i.e. there are no null references 1 ,
values pointed to must be currently allocated and correctly aligned 1 ,
a value can either be referenced once mutably, or multiple times immutably,
values can only be mutated via a mutable reference 2, and
values cannot be moved or deallocated while referenced 2 .

The compiler statically checks these rules using a system of inferred lifetimes, which allow
references to be moved around and copied in non-trivial ways while maintaining safety. This
concept has its roots in region-based memory management [14, 11], and it prevents access to
values after deallocation while still providing power and flexibility 2 .

In the example below, the two &mut data references are not permitted to have overlapping
lifetimes. Rust infers that an object’s lifetime ends when the last reference to it goes out of
scope – in this example, at the end of referenced_box().

fn referenced_box() {
// data allocated on the heap here:
let mut data = Box::new(Data{a: 1, b: 2});
// two immutable references exist during this call:
use_data(&data, &data);
// and two mutable references, which causes a compiler error:
// cannot borrow `data` as mutable more than once at a time
use_data(&mut data, &mut data);
// reference only exists for duration of expression:
*get_field(&mut data) = 3;
// no references exist by here, so data freed without errors

}
fn get_field(data: &mut Data) -> &mut i32 {

// compiler infers lifetime of return from argument
&mut data.a

}
fn use_data(a: &Data, b: &Data) {

assert!(a.a == b.a);
}

Dangling references, i.e. references to values which would be de-allocated at the end of a
scope, are forbidden in Rust.

1 Rust doesn’t currently have a formal specification, so the best sources for this information (besides the
compiler source code) are the Rust Book [18] and the Rust Reference [28]

2 Though this can be circumvented via a mechanism called “interior mutability”.

ECOOP 2023



39:6 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

fn dangle() -> &u32 {
let value = 0;
&value

}
// this function's return type contains a borrowed value, but there is no
// value for it to be borrowed from
// help: consider using the `'static` lifetime

Rust instead provides a mechanism for overriding the point at which a lifetime ends by
explicit annotation:

fn dangle2<'a>() -> &'a u32 {
let value = 0;
&value

}

The borrow checker is the name of the machinery in Rust which statically detects invalid
uses of references and keeps track of when objects’ lifetimes end.

2.1.3 unsafe

Rust includes a mechanism that allows programmers to choose to break the rules described
above. This is useful for performance-critical hand optimisation and working around the
limitations of the compiler’s static checking. Use of unsafe indicates that something odd is
afoot, it should be used sparingly and serves as an explicit marker to signal to programmers
and auditing tools alike that these pieces of code require additional scrutiny.

unsafe isn’t a free pass to do anything – only a very specific set of extra privileges are
available within these sections (see the Rust Book [18, §19.1]):

ordinary C-like pointers called raw pointers, which don’t have the limitations of references,
can be dereferenced 1 2 3 ;
functions and types marked unsafe can be used, allowing access to additional library
APIs 1 3 2 4 3 5 4 6;
static variables can be accessed (which come with thread safety issues);
traits marked unsafe can be implemented, automatically creating more unsafe code;
unions can be accessed, which can be used to bypass type checking 1 3 ;
external C/C++ functions may be called, importing the memory safety concerns of those
languages 1 2 3 4 .

In return, the programmer promises not to break any of the language’s invariants.
The most important of these are the ability to use raw pointers and to call unsafe

interfaces. Raw pointers are the most significant hole in the safety guarantees that Rust
can provide, but they are the primary point of compromise between full safety and a usable
systems programming language. Raw pointers are motivated by interoperability with non-Rust
components, either through the operating system ABI or through linking C components
into Rust programs, or Rust components into C programs. Raw pointers allow all the usual
trickery, including creating them from integers, arbitrary arithmetic, null pointers, dangling

3 std::mem::MaybeUninit
4 std::slice::from_raw_parts()
5 slice::get_unchecked()
6 Box::from_raw()



S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:7

Tag
129

Capability

063
64-bit address

perms object type bounds

Figure 1 The structure of a 128-bit capability.

pointers, freedom to cast between types, and so on. Access to unsafe interfaces enables use
of a number of standard library features, notably std::mem::transmute(), which allows
casting between any pair of types with the same size, and std::mem::MaybeUninit, which
allows the creation of uninitialised values 1 .

2.2 The Rust Compiler
The Rust compiler is mostly self-hosting, i.e. Rust is implemented in Rust. The front-
end, type checking, middle intermediate representation (MIR), and an increasing number
of optimisations are implemented in Rust. LLVM provides the backend and remaining
optimisations, consuming LLVM IR and compiling to a range of targets including ARM and
x86_64. This is all very convenient for porting Rust to Morello, as there is an existing LLVM
implementation for Morello [20]. A sketch of the compiler’s structure is drawn below.

Parser High-level IR Middle IR LLVM IR ARM

x86_64

. . .

Morello

Rust Compiler Morello LLVM

The majority of the compiler changes outlined in §3 are over the Middle IR portion of the
compiler.

2.3 Capability hardware
CHERI is a generic instruction set extension to introduce capabilities, an extended pointer
representation designed to add hardware security to memory accesses [36]. Capabilities
add validity and permission information to pointers, expanding them to 128-bits on 64-bit
platforms. Each capability is attached to a 1-bit validity tag, and this is required to be set
to successfully perform memory accesses via the capability. Further, valid capabilities can
only be constructed from other valid capabilities, and only in ways which don’t exceed the
permissions of the parent capability. This property allows software to be separated into
compartments which have limited, controlled access to one another.

Capabilities add four pieces of metadata to plain pointers: bounds, permissions, flags,
and object type. An example of the structure of a 128-bit capability can be seen in Figure 1.

Bounds detail the range of memory which a capability is allowed to address; the hardware
uses this information to perform automatic bounds checking. To be effective, the bounds
of capabilities must be appropriately restricted to the object or buffer they point to. The

ECOOP 2023



39:8 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

CHERI LLVM project extends the LLVM compiler infrastructure to do exactly this [20].
Most C and C++ programs, as well as a number of other languages with an LLVM backend,
benefit because they automatically gain bounds checking with minimal to no modifications. It
is worth noting, however, that CHERI’s bounds checking has a limitation: to keep capability
sizes reasonable, bounds information uses a floating point encoding. This means that bounds
for larger regions become increasingly approximate, and marginally out of bounds accesses
may succeed if regions are not padded to fill the extra space.

Permissions can be used to provide fine-grained read, write, execute, and capability
manipulation protections for each capability.

Flags provide space for architecture-specific controls for each capability.
Object types are used as part of a mechanism to seal capabilities, such that they can

only be dereferenced by specifically and deliberately chosen pieces of code. This opens up
possibilities for compartmentalising programs and moving data and permissions through
untrusted compartments without degrading security properties.

As a result of the requirement for capabilities to be derived from other valid capabilities,
the provenance of each capability must be well-defined. This is a critical part of controlling
the access rights of different parts of programs. For these limitations to hold, validity bits in
uninitialised memory must be cleared before access is granted. This is expected to be provided
by hardware or low level system software [37, §3.6.2]. This ensures that any uninitialised
pointer will be invalid, and therefore impossible to dereference accidentally. The downside of
the provenance property is that integer-to-pointer casts in existing code are likely to become
invalid, though the changes needed to fix this are often minor. This is unsurprising given that
integer-to-pointer casts are something of a headache for provenance analyses already [22].

Interpreted generously, bounds checking and provenance guarantees cover points 1 (no
use of uninitialised pointers) and 3 (bounds checking) of §2. Research into ways that
CHERI might be used to provide temporal safety guarantees is ongoing [39]. There is research
investigating implementations of free() that can sweep the memory and invalidate any
pointers into the free’d memory region [41] 2 . Even with temporal safety, memory leak
bugs remain a problem to be solved by other tools 4 .

2.3.1 Morello prototype

Morello is a prototype platform for exploring capabilities, and is based on an application-class
ARM SOC, the same sort that is found in modern smartphones and ARM-based personal
computers. It is supported by a suite of open source software, including a C/C++ compiler
based on LLVM [20], a FreeBSD port [34], and custom build automation tooling [9]. Software
for Morello can be compiled in two different modes, both of which are supported by the
CHERI BSD operating system we use [34].

Hybrid mode

In this mode of compilation, pointers are stored using a plain integer representation instead
of capabilities, and normal ARM load and store operations are used to dereference them.
Pointers are transparently restricted by the bounds of a single default capability provided
by the operating system, with software running as if it were using normal ARM hardware.
Rust code compiled with the non-CHERI compiler target triple aarch64-unknown-freebsd
will run on CHERI BSD in this mode. While this mode is defined by the use of capability
unaware load and store operations it is still possible to explicitly use capabilities, if the
programmer desires and the facility is exposed by the language.



S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:9

Purecap mode

In pure capability (Purecap) mode, all pointers are represented using capabilities, and
capability instructions are used to access memory. Our modified compiler adds a new
target triple to support this mode called aarch64-unknown-freebsd-purecap. This target
configures the LLVM backend to emit capabilities instead of plain pointers, and the Rust
compiler to use data layouts appropriate for capabilities. The details of the changes necessary
to enable Rust for Purecap Morello are outlined in the next section.

Morello uses 128-bit capabilities, throws hardware exceptions if an invalid capability is
dereferenced, and the maximum bounds size precisely representable is 4 KiB [1].

3 Adjustments to the Rust compiler and standard library

We describe the changes to accommodate capabilities in the Rust compiler. Recall that
capabilities are 128-bit with one invisible tag bit which is maintained transparently by the
hardware. To be able to use capabilities to represent pointers, a number of modifications to
the compiler and standard library are necessary. Our port of Rust is based on release 1.56.0
(Edition 2021 Rust).

3.1 Rust semantics open question: usize

usize is an integer type, ambiguously defined by the documentation as the “[...] pointer-sized
unsigned integer type.” [26] This is a straightforward definition on conventional architectures
with integer pointer representations, but on Morello the meaning becomes unclear. There
are two obvious interpretations for the semantics of usize:

usize should be an integer and contain only an address, i.e. the lower word of a capability
– a 64-bit number, or
usize should behave like an integer and contain a whole capability, i.e. a Morello
double-word sized 128-bit number.

We chose to explore the 64-bit approach for a number of reasons. First, the Rust
community have sought to resolve this, and there are ongoing discussions that are leaning
towards word-sized usize [31, 25]. Secondly, the previous work by Sim [32] explored 128-bit
usize and was left with a handful of technical limitations which would be side-stepped by
using machine-word-sized usize. Finally, there are several technical benefits to 64-bit usize,
which we describe below.

Efficiency

usize is the only type of integer that can be used in array indexing, and is also used
to represent lengths of arrays and sizes of types. These uses are very common, and only
require that usize be able to represent the full range of addressable memory locations.
In comparison, pointer-integer casts that would only function if usize stored a complete
capability are rare. Making usize large enough to hold a capability would leave extra space
that would be wasted in the vast majority of uses.

Robustness

While allowing usize to hold a valid capability would let simple pointer-integer-pointer
round-trip casts work unmodified, it would also introduce inconsistent behaviour in many
other cases. The tighter provenance model applied by CHERI invalidates capabilities derived
only from integers, and also those produced by many arithmetic operations, including bitwise

ECOOP 2023



39:10 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

logic. Given that bitwise logic is a common use case for integer-pointer casting, this would
likely cause many unexpected capability faults. Ensuring instead that no usize can hold a
valid capability guarantees that the compiler will always flag these cases, saving confusion and
debugging time. This is traded against the cost of needing to make minor changes to simpler
cases that might otherwise have worked unmodified, which we believe to be an acceptable
sacrifice. Making this choice negates the major advantage of a 128-bit representation: being
able to hold a valid capability.

Data compatibility

Under architectures currently supported by Rust, a cast from pointer to usize is expected
to yield an integer containing the address being pointed to. Capabilities contain more
information than this. Making usize a 64-bit integer containing only the address portion of
the capability retains the expected behaviour.

3.2 Target specification
The Rust compiler has records of the size of various types for each platform it supports.
This includes the size of pointers, which also decides the size of usize. To support Morello
Purecap mode, the compiler needs more fine-grained information about the layout of pointers,
and the size of usize needs to be decoupled from the in-memory size of pointers.

To do this, we have implemented pointer width and pointer range, where the compiler
previously only had a single pointer size. Under mainstream architectures, these two values
are all equal and redundant, but on Morello they are differentiated. Pointer width describes
the in-memory size of pointers. Under Purecap, this will be the total size of a capability
(128-bit), excluding the validity tag which is stored separately by the hardware. Pointer
range describes the size of the address portion of pointers. Under Purecap, this will be the
size of a plain pointer (64-bit), and the subset of a capability that contains the target address.
Pointer range will also be the size of usize.

1 pub fn target() -> Target {
2 Target {
3 llvm_target: "aarch64-unknown-freebsd".to_string(),
4 pointer_range: 64,
5 pointer_width: 128,
6 data_layout: /* ... */ ,
7 arch: "aarch64".to_string(),
8 options: TargetOptions {
9 features: "+morello,+c64".to_string(),

10 llvm_abiname: "purecap".to_string(),
11 max_atomic_width: Some(128),
12 atomic_pointers_via_integers: false,
13 merge_functions: MergeFunctions::Disabled,
14 ..super::freebsd_base::opts()
15 },
16 }
17 }

compiler/rustc_target/src/spec/aarch64_unknown_freebsd_purecap.rs:3

Figure 2 The Rust target options for the target triple aarch64-unknown-freebsd-purecap.



S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:11

Information about a target is stored within the compiler using the structure shown in
Figure 2. The target specification defines fundamental properties of the architecture and
operating system. Morello inherits its base properties from the Aarch64 FreeBSD target, and
then overrides some specifics. The new pointer entries can be seen on lines 4 and 5. Line
6 gives the standard data layout string describing the Morello architecture to LLVM, for
brevity we do not expand on the details of this. For Purecap, this uses an extension specific
to Morello LLVM [20] to specify that pointers be stored in address space 200, meaning that
they should be represented using capabilities. Lines 9 and 10 specify the Purecap ABI, and
are required to enable relevant features in Morello LLVM. Lines 12 and 13 disable some
optimisations that are not yet compatible with Morello.

3.3 Constant evaluation
An unexpected source of problems for our changes to the compiler was Rust’s constant
evaluation feature. Constant evaluation allows a subset of Rust expressions to be interpreted
during compilation, as is demonstrated by the snippet below.

1 const MAGIC: u32 = long_multiply(3, 5)*7;
2 const fn long_multiply(a: u32, b: u32) -> u32 {
3 let mut a_shifted = a;
4 let mut b_shifted = b;
5 let mut result = 0;
6 while a_shifted != 0 {
7 if a_shifted & 1 == 1 {
8 result |= b_shifted;
9 }

10 a_shifted >>= 1;
11 b_shifted <<= 1;
12 }
13 result
14 }

This snippet contains only consts, and the compiler will fully evaluate the value of MAGIC
at compile time. long_multiply(3,5) will be evaluated to 15, and then MAGIC will be
evaluated to 105. The constant evaluator has an internal representation of memory so that
it can run constant code even when it contains mutable values, as on lines 3, 4, and 5 of
this example. Constant evaluation uses the same data layout as the rest of the compiler,
and the subset of the language allowed includes support for pointers. Capabilities add extra
non-address components to pointers, so constant evaluation must be modified to take these
into account. While it might be possible to enforce the full set of capability rules during
interpretation, we currently believe that Rust’s semantics already enforces them. For the
time being we simply leave the unused space uninitialised, but the changes needed to the
interpreter are still wide-reaching.

Values during interpretation can be represented either as large contiguous allocations, or
single values represented directly 7. Memory allocations are represented as arrays of data
bytes, with auxiliary information about which bytes have been initialised. The compiler
relies on type information to describe the structure of the data contained in the allocation.

7 Single values are handled separately as a performance optimisation.

ECOOP 2023



39:12 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

Memory allocations themselves remain unchanged, the unused metadata bytes of capabil-
ities are left uninitialised. References to subsets of memory allocations are passed around
inside the compiler as the AllocRange type, so this must be extended to include width and
range information. Without the extra information, the compiler does not know which bytes
will be uninitialised metadata when operating on a referenced value. The extra information
is also needed to allow conversion to types representing numeric values, which will need
somewhere to inherit width and range information from. The modification to AllocRange is
shown below.

pub struct AllocRange {
pub start: Size,
// Replacing: pub size: Size,
pub range: Option<Size>,
pub width: Size,

}

compiler/rustc_middle/src/mir/interpret/allocation.rs:75
Single numeric values are passed around as the types Scalar and ScalarInt. Because

pointers are in some cases stored using these types, they must also carry width and range
information. These changes are shown below.

pub enum Scalar<Tag = AllocId> {
Int(ScalarInt),
// Replacing: Ptr(Pointer<Tag>, u8),
Ptr(Pointer<Tag>, u8, u8),

}

compiler/rustc_middle/src/mir/interpret/value.rs:124

pub struct ScalarInt {
data: u128,
// Replacing: size: u8,
range: u8,
width: u8,

}
compiler/rustc_middle/src/ty/consts/int.rs:122

The changes to the compiler to propagate and update the extra information on these three
types are fairly simple, but very widespread, including changes to object layout, constant
evaluation, and vtable construction.

3.4 Pointer code generation
Code generation for atomic pointers makes some unsound assumptions about pointers for
the Morello platform. To work around the limitations of pointer operations on some targets,
Rust generates code which casts the pointer to an integer – this is not permissible on Morello
and yields capability faults at runtime. Thankfully, the fix here is simple: we have added an
option to the target settings to disable this cast on the Morello target, which is shown in line
12 of Figure 2. The new option is then checked in the code generation pass, as shown below.
On Morello, which supports 128-bit atomics, this avoids down-casting pointers to a pair of
isize (64-bit) integers.



S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:13

// Replacing: if ty.is_unsafe_ptr() {
if ty.is_unsafe_ptr() && bx.target_spec().atomic_pointers_via_integers {

let ptr_llty = bx.type_ptr_to(bx.type_isize());
ptr = bx.pointercast(ptr, ptr_llty);
val = bx.ptrtoint(val, bx.type_isize());

}
compiler/rustc_codegen_ssa/src/mir/intrinsic.rs:471

3.5 Tweaks to LLVM
The port of LLVM for Morello [20] is mature, and we have encountered few bugs.

Some LLVM optimisations currently cause incorrect code generation when compiling Rust
for Morello, so we have disabled them until they can be debugged. The optimisations currently
disabled are function merging, visible in line 13 of Figure 2; and the Scalar Replacement Of
Aggregates optimisation, which requires minor changes inside LLVM.

We also encountered an edge case in LLVM code generation that caused 6 byte structures
to be emitted as 96 bit integers, which then triggered a miscompilation. This ultimately
lead to spurious capability faults during execution of affected parts of programs. While the
underlying bug has now been fixed in upstream Morello LLVM [6], we found it could be
worked around by padding affected structures to larger sizes.

The remaining adjustments that were needed were to the Rust standard library.

3.6 MPSC
Rust includes a large suite of tests for the compiler and libraries. Running the standard
library tests on Morello has been our primary means of detecting code generation bugs and
standard library compatibility issues. We had initially anticipated that the standard library
would need many changes, given its size, low level nature, and need for performance. In
actuality, we have so far only needed to make minor changes, and the modifications to the
MPSC component are by far the most involved.

The Multi-Producer Single Consumer primitive in Rust (MPSC) is part of the standard
library’s concurrency module, std::sync. It provides communication channel types that
can pass objects between threads. The implementation of MPSC demonstrates exactly the
sort of problem one might expect to see on Morello: pointers are passed between threads,
but converted to integers and back as part of the trip. The same storage is also used to
hold non-pointer signalling values. The problem stems from the code below which directly
converts a usize into a pointer type (the type of inner).

This isn’t compatible with our changes to the compiler because the usize used by MPSC
can no longer be used to carry a valid pointer, and the usize type is no longer the same size
as a pointer. This causes casting to fail during compilation, but would still cause run time
errors if it did compile. In CHERI C, one might use uintptr_t, but as no equivalent type is
currently defined in Rust we have simply replaced the integer types with pointers. MPSC
has no need to perform complex arithmetic or any other integer-specific operations, so this
doesn’t create any problems. The signalling values can simply be cast into pointers before
use, and because they should never be dereferenced it doesn’t matter that the resulting
capabilities are invalid.

#[inline]
pub unsafe fn cast_to_ptr(self) -> *mut () {

ECOOP 2023



39:14 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

// Replacing: pub unsafe fn cast_to_usize(self) -> usize {
mem::transmute(self.inner)

}

#[inline]
pub unsafe fn cast_from_ptr(signal_ptr: *mut ()) -> SignalToken {
// Replacing: pub unsafe fn cast_from_usize(signal_ptr: usize) -> SignalToken {

SignalToken { inner: mem::transmute(signal_ptr) }
}
library/std/src/sync/mpsc/blocking.rs:53

It is interesting to note that since our changes to MPSC for the port to Morello, very
similar changes have happened upstream. The upstream changes are the product of work on
pointer provenance in the MIR interpreter project (MIRI) [17].

3.7 FFI types
Rust’s standard library makes use of the C standard library via a wrapper called libc. All
use of C APIs from Rust requires a wrapper or Foreign Function Interface. In testing on
Morello we found a number of incompatible type definitions, where the original API expected
a pointer or pointer sized value, and the Rust wrapper declared the value to be usize. This
is easy to fix by simply replacing the types appropriately. An example is drawn below, where
we have replaced integer types with Rust pointer types.

pub type off_t = i64;
pub type useconds_t = u32;
pub type blkcnt_t = i64;
pub type socklen_t = u32;
pub type sa_family_t = u8;
// Replacing: pub type pthread_t = ::uintptr_t;
pub type pthread_t = *mut PThread;
pub type nfds_t = ::c_uint;
pub type regoff_t = off_t;

#[allow(missing_copy_implementations)]
pub struct PThread { _opaque: [u8; 0] }
library/libc-0.2.93/src/unix/bsd/mod.rs:1

There are likely to be interfaces not covered by tests that will require further work, we
have taken a conservative approach to all the changes we have made in the compiler making
the minimal alterations to get correct compilation of the tests we have. A different approach
might be sensible here, where all ptr_t types should natively be Rust pointer types for
Morello targets. It is not clear how significant the knock-on effects of this change would be
on external libraries which expect integer semantics for C pointer types.

pub type size_t = usize;
pub type ptrdiff_t = isize;
pub type intptr_t = isize;
// TODO: Perhaps on Morello this should be `* ::c_void'
pub type uintptr_t = usize;
pub type ssize_t = isize;



S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:15

pub type pid_t = i32;
pub type uid_t = u32;
pub type gid_t = u32;
pub type in_addr_t = u32;
pub type in_port_t = u16;
// Replacing: pub type sighandler_t = ::size_t;
pub type sighandler_t = *const ();
pub type cc_t = ::c_uchar;

library/libc-0.2.93/src/unix/mod.rs:19

4 Performance analysis methodology

We outline our method for measuring Rust programs running on the prototype Morello
platform.

4.1 Test hardware
We are using the Morello Prototype hardware [2]. The Morello CPU is a 7nm quad-core
“Neoverse N1” based Armv8-A processor clocked at 2.5 GHz, connected to 16 GiB of 2933
MT/s DDR4 memory. The firmware is updated to Release 1.3 [2]. The prototype is packaged
as an ATX-style motherboard in a standard ATX computer case.

4.2 Operating system
As described earlier, we use the port of FreeBSD to Morello, called CHERI BSD [34]. CHERI
BSD is very stripped back, with minimal system utilities running for network connectivity
and multi-user support, making it ideal as a benchmarking platform. The operating system
was compiled with the CTSRD port of LLVM for Morello [20] using the cheribuild.py
utility [9].

4.3 Disabling bounds checking
Rust provides automatic checking of array accesses, ensuring that subscripting will be in-
bounds. This covers a subset of the bounds checking provided by Morello, which checks
the bounds of all pointer accesses. To compare Morello hardware bounds checking to the
software bounds checking emitted by rustc, we added a code generation flag to the compiler
which disables software bounds checking: -C drop_bounds_checks. This has the effect of
making all array accesses the same as Rust’s unsafe fn slice::get_unsafe(). Enabling
this option on normal hardware makes the compiler unsound, while on Purecap Morello
soundness is mostly, though not entirely, restored by hardware bounds checking. Bounds
checks on Morello are precise up to 4 KiB blocks of memory, becoming imprecise beyond
that as a result of the floating point representation used to store bounds information. For
the sake of the performance comparisons made in this paper, we think that this approach is
reasonable to give some indication of the cost of bounds checks relative to the cost of CHERI
extensions.

This method of disabling software bounds checking is similar to previous work on
measuring the runtime cost of Rust’s safety checks by Zhang et al., although not identical [42].

ECOOP 2023



39:16 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

fn bounds_check(
&mut self,
block: BasicBlock,
slice: PlaceBuilder<'tcx>,
index: Local,
expr_span: Span,
source_info: SourceInfo,

) -> BasicBlock {
// We do return an un-modified access when the -C drop_bounds_check
// flag is enabled
let gcx = *self.tcx;
if gcx.sess.opts.cg.drop_bounds_checks {

return block
}

// Otherwise, generate MIR code to check the bounds of an access
/* ... */

}

compiler/rustc_mir_build/src/build/expr/as_place.rs:666

Our modification adds an early return to the code generation of bounds checking assertions,
which would normally be inserted when array subscripting. In Zhang’s work they modify a
later stage of code generation to disable the lowering of these assertions to LLVM IR, as well
as assertions that check for integer-overflow. We ran benchmarks with both approaches and
found similar results, but we present the results for tests with the modification listed above
only, as we are not investigating the cost of integer-overflow checks on Morello.

4.4 cargo bench

We ported the standard Rust benchmarking infrastructure to Morello. Programs are cross-
compiled on a normal Apple M1 or x86_64 system. Rust’s infrastructure includes a remote
test harness which sends binaries to a remote system under test using network sockets.
We built a port of the receiving part of this software, called remote-test-server in C,
which runs on the Morello prototype. We can then use the standard cargo bench com-
mand to orchestrate building and running tests, which runs benchmarks repeatedly and
reports a time per iteration in nanoseconds, and the variance between runs in ± nano-
seconds. For each benchmark in the suite we produce four results to complete a com-
parison matrix by varying two parameters. The first parameter is the hardware mode
which can be one of two values: Hybrid or Purecap, as described in §2.3.1, this is var-
ied using the --target option and can be either aarch64-unknown-freebsd for Hybrid,
or aarch64-unknown-freebsd-purecap for Purecap mode. The second parameter is the
bounds checking mode, using our -C drop_bounds_checks compiler flag, which can be either:
bounds checking disabled (RustDBC), or enabled (Rust).

For example the results below are produced by a test from the crate hashbrown. Time is
in nanoseconds (ns).



S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:17

hashbrown-0.11.2/clone_from_large

Rust RustDBC

Time/iter ± Time/iter ±

Purecap 15,779 8 15,818 59
Hybrid 15,557 53 15,601 16

Before each run in the test matrix, Rust and the Rust standard library is also recompiled
with flags to enable/disable software bounds checking appropriately for Rust/RustDBC.

From this data, we calculate Relative Error (RE) for each test using the formula below,
and count the variance into several bins in Table 1.

RE = ±time/iter (ns)
Mean benchmark time/iter (ns)

For example, the RE of Hybrid with bounds checking for hashbrown-0.11.2/clone_from_-
large is 0.34%. The benchmarks with high relative error are tests which are very fast
running, and are limited by the measurement precision of cargo bench in nanoseconds.

4.5 Line counts
We include a count of the number of lines of code with the table of benchmarked projects in
Appendix A. This is intended as a rough guide to the scale of the benchmarks. The table
also includes a count of lines of unsafe code, as an indication of how much Morello’s safety
guarantees might add to the soundness of the specimen code. Both counts are gathered
using the cargo count tool [19]. In total across the 19 projects, there are 108k lines of Rust
source of which 1041 are unsafe.

The lines of code count gives the number of non-blank, non-comment lines of Rust source
code in the repository of each project, for every project we use a benchmark suite from.
The lines of unsafe count gives the number of non-blank, non-comment lines inside unsafe
blocks and unsafe functions.

It should be noted that both of these measures are approximate and meant as a guide
only. The number of lines of code is given for the whole of each project repository, and
will include the library code under test, the benchmark suite, and any additional tests and
Rust build scripts present, but will exclude any code in dependencies (of which each project
generally has several). The number of lines of unsafe is particularly approximate, for two
reasons. Firstly, the effects of unsafe are not well quantified by counting lines of code; the
impact of a single line in a frequently and widely called function may be much higher than
a large unsafe block that executes only once during the lifetime of the program. Further,
a single line of unsafe can call an arbitrary amount of external unsafe code through the
foreign function interface. Secondly, there are some known edge cases in the counting tool
that may cause slightly inaccurate counts [19].

4.6 Test suites
A full list of test suites is available in Appendix A. These were picked for having low-level
implementations of fast data structures, and having a small set of external dependencies.
The suites cover arithmetic, array computations, cryptography, data-structures, Fourier
analysis, hashing, and graph algorithms. Each test was taken directly from the standard Rust
package repository (https://crates.io) and checked out to a version which is compatible
with our Rust compiler. Cargo will satisfy dependencies with the latest available package
which meets the requirements, but frustratingly that doesn’t include the Rust edition, so

ECOOP 2023

https://crates.io


39:18 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

for several packages we had to pin dependencies at older compatible versions too. Our test
script automatically collects repositories from Git, and applies the minor patches to the
Config.toml to pin dependencies where necessary. In total there is a little over 108k lines
of Rust source code in these suites, and plenty more in the dependencies. There are
870 individual benchmarks which are run for each of the four modes described above.

5 Results

 0

 0.5

 1

 1.5

 2

 2.5

matrixmultiply ndarray num-bigint priority-queue petgraph rust-decimal smawk strsim-rs uuid-rs

 0

 0.5

 1

 1.5

 2

 2.5

aes arrayvec fixedbitset hashbrown sha2 sha3 indexmap itoa lebe ryu

purecap-bounds purecap-nobounds hybrid-nobounds

Figure 3 Performance analysis of Rust programs in each of the modes described in §4, normalised
to Hybrid-mode.

We present the aggregate execution times of each mode of Rust on Morello in the table
below. They are normalised to Hybrid mode with software bounds checking enabled. Lower
numbers indicate higher average performance.



S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:19

Table 1 Count of benchmark relative error into categories.

Relative error Count

0 – 1% 3300
1 – 5% 142
≥ 5% 38

Rust RustDBC

Purecap 1.39 1.38
Hybrid 1.00 0.99

Individual benchmark suite results are shown in Figure 3. Again, for each of our benchmark
results, we normalise against Hybrid-mode Rust with the Rust compiler’s software bounds
checks enabled. We then take the geometric mean of each mode to aggregate the normalised
performance change of the benchmarks within a benchmark suite, i.e. hashbrown, which
internally contains 41 benchmarks. Bars above 1.0 are slower than Hybrid Rust with software
bounds checks enabled, bars below are faster. These numbers represent the change in
performance versus Rust on a modern Aarch64 machine today. Rust on Purecap Morello is
approximately 39% slower than Rust on the equivalent Aarch64 machine.

In this section we will contrast the cost of bounds checking on the software and hardware,
and consider the types of workload whose performance is affected the most by hardware
bounds checking.

5.1 The cost of software bounds checking

Toggling software bounds checks (RustDBC vs. Rust) makes minimal difference in the
performance we observe in our benchmark suites. The performance is similar because
compiler optimisations remove most unnecessary bounds checks from code before runtime,
and the performance cost of what remains is extremely low. Note that we are dropping
bounds checks as aggressively as possible, even dropping them where Morello would provide
imprecise bounds (as discussed in §4.3) – so we have here an upper-bound on the performance
gain achievable in a sound implementation of Rust. We therefore conclude that re-engineering
the Rust compiler to drop bounds checks on Morello is without merit.

5.2 The cost of hardware bounds checking

By-and-large the cost of hardware bounds checking is very significant, with only lebe showing
a negligible difference. The performance hit, though large, is still relatively small compared
to other techniques for always-on bounds checking for arbitrary binaries – such as running a
program under valgrind or purify [13, 10]. For many applications this 39% cost for running
on Morello is acceptable, and will likely only improve with any future hardware designs.
This does open an interesting point for future work: off-loading as much bounds-checking to
software, ideally statically enforced, and maintaining hardware bounds-checks where these
guarantees cannot be enforced by software alone, could provide performance and strong
safety guarantees.

ECOOP 2023



39:20 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

5.3 Benchmarks
We present the results aggregated by benchmark suite in Figure 3. This shows consistent
slowdowns in Purecap modes, but reveals some variation depending on the workload. The
worst slowdowns are in arrayvec and smawk which perform a substantial number of array
accesses, maximally exercising the capability protections afforded by Purecap Morello. lebe,
which does endianness conversions for integers, is unaffected by differences under Purecap
Morello, or whether bounds checks are enabled or not. The story is similar for other arithmetic
heavy crates, like fixedbitset; code that leans less heavily on memory access suffers the
lowest performance hit when running on Purecap Morello.

5.4 Validity of results
We address potential concerns for the validity of our results, and how we believe we have
mitigated these.

5.4.1 Prototype hardware
The Morello prototype is just that, a prototype. There are known issues with real-world
performance characteristics of the first prototype when operating in Purecap mode, which
are reflected in our performance analysis. When the details of these limitations are released,
or when a future revision of the hardware is released (to which ARM have not committed
themselves), re-running our performance analysis to see if the overhead of capabilities can be
brought in-line with normal performance of Aarch64 would be of significant interest. The
comparison to Hybrid-bounds in this section gives the clearest picture of the behaviour of
a comparable Aarch64 machine with no hardware bounds checking: in Hybrid mode the
Morello prototype allows regular loads and stores using 64-bit pointers. That being said,
the implementation is still customised compared to normal Aarch64 and micro-architectural
quirks might be present which mean this comparison is invalid compared to “wild” Aarch64
implementations. Table 1 shows that our measurements are precise and run-to-run variance
is very small in the vast majority of benchmarks.

5.4.2 Choice of benchmark suite
We have used benchmark suites included with large popular projects from the Rust package
repository crates.io, spanning a range of different applications: hashing and cryptography
(arithmetic heavy); tree and graph like data structures (indirection heavy); and big integer
and matrix operations (array heavy). This is different to previous approaches to measuring
Rust runtime performance, notably in recent work by Zhang et al., where synthetic micro-
benchmarks were used [42]. We have chosen to use benchmarks that test real world Rust
code as this is more likely to give a representative picture of how the cost of bounds checking
will be felt in regular Rust programs. We found some benchmarks (for example, RustFFT
and itertools) would compile for Morello, but not run correctly on Purecap modes because
of assumptions about pointers which are invalid in Purecap mode.

6 Related Work

In this section we discuss the context for Morello and the necessary related work that enabled
us to build the Rust for Morello compiler.

crates.io


S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:21

6.1 Rust and type-safe systems programming
Rust itself has been a subject of significant academic research. On the topic of formally
specifying Rust, notable work includes Rust Belt [16] and Oxide [38]. We are interested in
the formal treatment of Rust, especially in the context of the formal specification of Morello,
but for this paper we consider this to be future work.

Additionally, there has been a history of other attempts at designing safe systems
programming languages which, like Rust, use some notion of lifetimes to manage memory
allocation and prevent memory errors. Cyclone [14] is one such language, which uses type-level
regions among other type-system machinery to ensure safety while still admitting low-level
systems code. The specifics of preventing memory errors in safe systems programming
languages is discussed more in §6.3.

6.2 Prior work porting Rust to CHERI
There is existing work that explores extending the Rust compiler to target CHERI MIPS
hardware. Nicholas Sim’s MSc thesis [32] describes the initial steps of targeting CHERI
in the Rust compiler. Crucially, Sim chose the 128-bit representation of usize, whereas
we opted for 64-bit usize (discussed in §3.1). This has cascading effects on the rest of the
compiler and leads to various issues.

A major concern of Sim was divergence from upstream, which we agree is a real consider-
ation. The wording of the documentation does not make it totally clear how large usize
should be on Morello, it states [29]:

usize
The pointer-sized unsigned integer type.
The size of this primitive is how many bytes it takes to reference any location in
memory. For example, on a 32 bit target, this is 4 bytes and on a 64 bit target, this is
8 bytes.

There is clearly room for argument one way or the other. We are of the opinion that 64-bit
usize on Morello is compatible with the spirit of this definition, Morello is a 64-bit platform
with 64-bit addresses, so in order to range over all memory addresses it suffices for usize to
be 64-bit. Conversely, supporting Sim’s initial choice, to reference a location in memory on
Morello it is necessary to use a capability which is 128-bit.

Sim also reported a number of technical issues resulting from 128-bit usize, including
performance problems, and the need for inserting integer-truncate and integer-extend opera-
tions when calling LLVM intrinsics like memcpy and inttoptr. We have not had to contend
with these issues in our implementation, and agree with Sim’s assessment that 64-bit usize
is preferable for this reason.

6.3 Bounds checking
There has been significant prior research on enforcing memory safety by preventing out-of-
bounds accesses, either by statically proving accesses will be in-bounds, or by augmenting
programs with dynamic bounds checking (or a combination of both).

A key result on statically eliminating bounds violations comes from Xi and Pfenning,
who demonstrate that, with a dependent type system, array accesses may be accompanied by
proofs that the computed index is within the array bounds [40]. This gives a compile-time
guarantee that no bounds violations will occur on any array access, and thus safety can
be maintained without the need for any dynamic checks. This was done in the context
of a high-level, ML-like language, so there was no need to deal with gnarly C-like pointer
arithmetic.

ECOOP 2023



39:22 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

Prior work also explores static elimination of some bounds checking as a compiler
optimisation. An optimising compiler or just-in-time compiler may seek to reduce the number
of required bounds checks in a program by proving that some subset of accesses will always
succeed. Early work demonstrated how this may be done with dataflow analysis [12]. This
has been of particular interest to implementors working with the Java programming language,
as the specification states that out-of-bounds array accesses must be caught at runtime,
but bounds checks are not expressible in standard Java bytecode. To address this problem,
lightweight techniques for eliminating some bounds checks at runtime within a Just-in-Time
compiler have been developed [7].

In addition to minimising or eliminating bounds checks when compiling high-level lan-
guages like Java, there has been interest in enforcing memory safety in existing C and C++
programs. Doing automatic bounds checking in C or C++ is difficult because of the need
to track, at run-time, what object each pointer value is intended to point to [15]. Unlike
languages like Java, C and C++ allow programmers to do pointer arithmetic in order to
compute (for example) an index into the middle of an array. These pointers into the interiors
of objects may be written to a data structure or passed to a function within the application;
in order to check the latter dereferencing of such pointers, it is necessary to keep track of the
intended referent of the pointer as the pointer value flows through the program. There have
been several approaches to solving this problem and preventing or catching out-of-bounds
errors in existing systems code.

One heavyweight approach is binary instrumentation. Binary instrumentation tools like
purify and valgrind are able to arbitrarily add metadata to pointers and detect a wide
range of memory referencing errors [13]. Of course, as these tools are designed for debugging,
they impose a significant runtime overhead that makes them impractical for use in production
software. Additionally, purify can end up missing some memory safety violations if pointer
arithmetic happens to yield a pointer to a different but still valid object.

Another approach involves changing pointer representations. Systems like SafeC [5] and
Cyclone [14] use an extended pointer representation (“fat pointers”) to record information
about the intended referent. These fat pointers work similarly to Morello’s capabilities, but
their enforcement mechanisms are implemented in software rather than in hardware. SafeC
and Cyclone allow for dynamic checking, but also produce code that is incompatible with
external, unchecked code. A different approach, which maintains backwards compatibility
with legacy C code, was proposed by Jones and Kelly: store the address ranges of live objects
and ensure that pointer arithmetic never crosses out of the one object and into another valid
object [15]. In this approach, address ranges are stored in a global table, and the table is
referenced before every pointer arithmetic operation. Unsurprisingly, this introduces a large
amount of overhead at run-time – over 5x overhead on many programs and, in subsequent
work that extended this approach to cover a larger class of C programs, over 11x overhead [30].
Later work by Dhurjati and Adve demonstrated that the overhead of backwards-compatible
array bounds checks in C could be drastically reduced by exploiting a fine-grain partitioning
of memory called Automatic Pool Allocation [10].

7 Future work

The relationship between Rust and Morello seems clear, both aim to provide a programmer
with guarantees that memory safety violations cannot happen in their programs. Rust
achieves this through linear types, and runtime bounds checks, and Morello achieves this



S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:23

through hardware pointer provenance and hardware bounds checking. It would be interesting
to show a formal relationship between the semantics of Rust and the guarantees provided by
Morello.

With the Morello prototype running in Hybrid mode it is possible to mix the use of
capability instructions, where the hardware enforces bounds checking at run time, with
normal load/store instructions. Through static analysis it might be possible to find the
pointers in Rust which require runtime bounds checks and to promote those to capabilities on
a per-pointer basis: thereby pushing bounds checks into hardware, rather than by emitting
additional code. This could also be used to martial code in/out of unsafe components or
through the FFI. Using capabilities to compartmentalise each unsafe block and each FFI
call could bring new safety guarantees to Rust code which interacts with components that
could introduce memory safety violations.

If ARM later commits to incorporating CHERI extensions into the ARM ISA at large,
then incorporating the changes from our prototype Rust compiler into upstream Rust would
be a natural extension of this work.

8 Conclusions

Morello provides a costly, but not impractical, means for achieving always-on memory safety.
Like Rust, Morello has been built with the benefit of hindsight: memory safety is the most
significant problem for building bug-free code. We have found that the overhead for Morello
in this first prototype is around 39%, and elimination of Rust’s bounds checks might yield a
1% speed up.

There is a two-way benefit for a programmer using Rust on Morello. When using safe
Rust, a programmer knows that for all their safe code they cannot get a CHERI protection
error which would cause their code to fault at runtime – unlike if they were to program in
C. When using unsafe Rust, the programmer knows that if things do go terribly wrong,
the Morello platform will protect them from memory errors which could cause security
vulnerabilities.

The Rust for Morello compiler presented in this paper is fully featured. We have demon-
strated the compiler works for a significant chunk of wild Rust code, without modification.
In-all, the code we’ve compiled and run for Morello is around 108k lines of Rust, all from the
Rust Crates repository, and all without modification to the Rust code.

This compiler forms the groundwork for future research into safe systems programming on
hardware designed from the ground up to provide memory safety.

References
1 Arm. Arm® Architecture Reference Manual Supplement Morello for A-profile Architecture.

Arm, 2020.
2 ARM. Morello project – release notes, January 2022. last accessed: July 25,

2022. URL: https://git.morello-project.org/morello/docs/-/blob/morello/mainline/
release-notes.rst.

3 ARM and contributors. The android/morello release, April 2022. last accessed: September 28,
2022. URL: https://git.morello-project.org/morello/docs/-/blob/morello/mainline/
android-readme.rst.

4 ARM and contributors. Morello project – linux, August 2022. last accessed: September 28,
2022. URL: https://git.morello-project.org/morello/kernel/linux.

ECOOP 2023

https://git.morello-project.org/morello/docs/-/blob/morello/mainline/release-notes.rst
https://git.morello-project.org/morello/docs/-/blob/morello/mainline/release-notes.rst
https://git.morello-project.org/morello/docs/-/blob/morello/mainline/android-readme.rst
https://git.morello-project.org/morello/docs/-/blob/morello/mainline/android-readme.rst
https://git.morello-project.org/morello/kernel/linux


39:24 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

5 Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all pointer and
array access errors. In Proceedings of the ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation, PLDI ’94, pages 290–301, New York, NY, USA, 1994.
Association for Computing Machinery. doi:10.1145/178243.178446.

6 Silviu Baranga. Don’t replace a 96-bit memcpy with a capability load/store, September 2022.
URL: https://git.morello-project.org/morello/llvm-project/-/merge_requests/205.

7 Rastislav Bodík, Rajiv Gupta, and Vivek Sarkar. Abcd: Eliminating array bounds checks on
demand. SIGPLAN Not., 35(5):321–333, May 2000. doi:10.1145/358438.349342.

8 Common Weakness Enumeration. 2022 CWE Top 25 Most Dangerous Software Weaknesses.
Technical report, MITRE, August 2022. URL: https://cwe.mitre.org/top25/archive/
2022/2022_cwe_top25.html.

9 CTSRD CHERI. cheribuild, 2022. last accessed: July 25, 2022. URL: https://github.com/
CTSRD-CHERI/cheribuild.

10 Dinakar Dhurjati and Vikram Adve. Backwards-Compatible Array Bounds Checking for
C with Very Low Overhead. In Proceedings of the 2006 International Conference on Soft-
ware Engineering (ICSE’06), Shanghai, China, May 2006. URL: http://llvm.org/pubs/
2006-05-24-SAFECode-BoundsCheck.html.

11 Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney.
Region-based memory management in cyclone. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation, PLDI ’02, pages 282–293,
New York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/512529.
512563.

12 Rajiv Gupta. Optimizing array bound checks using flow analysis. ACM Lett. Program. Lang.
Syst., 2(1–4):135–150, March 1993. doi:10.1145/176454.176507.

13 Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and access errors. In
In Proc. of the Winter 1992 USENIX Conference, pages 125–138, 1991.

14 Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience with safe manual
memory-management in cyclone. In Proceedings of the 4th International Symposium on
Memory Management, ISMM ’04, pages 73–84, New York, NY, USA, 2004. Association for
Computing Machinery. doi:10.1145/1029873.1029883.

15 Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible bounds checking for arrays
and pointers in c programs. In Proceedings of the Third International Workshop on Automated
Debugging, AADEBUG 1997, 1997.

16 Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: Securing
the foundations of the Rust programming language. Proc. ACM Program. Lang., 2(POPL),
2017. doi:10.1145/3158154.

17 Ben Kimock. Remove ptr-int transmute in std::sync::mpsc, April 2022. URL: https://github.
com/rust-lang/rust/commit/dec73f5.

18 Steve Klabnik, Carol Nichols, et al. The Rust Programming Language. The Rust Project
Developers, 2021. URL: https://doc.rust-lang.org/1.55.0/book/.

19 Kevin Knapp. cargo-count, November 2017. URL: https://github.com/kbknapp/
cargo-count.

20 LLVM Project and CTSRD CHERI. CTSRD llvm-project, 2022. last accessed: July 25, 2022.
URL: https://github.com/CTSRD-CHERI/llvm-project.

21 Nicholas D. Matsakis and Felix S. Klock. The rust language. Ada Lett., 34(3):103–104, October
2014. doi:10.1145/2692956.2663188.

22 Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson,
Robert N. M. Watson, and Peter Sewell. Exploring c semantics and pointer provenance. Proc.
ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/3290380.

23 Matt Miller. Trends, challenges, and strategic shifts in the software vulnerability mit-
igation landscape. last accessed: July 25, 2022. URL: https://github.com/microsoft/
MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%
20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%
20vulnerability%20mitigation.pdf.

https://doi.org/10.1145/178243.178446
https://git.morello-project.org/morello/llvm-project/-/merge_requests/205
https://doi.org/10.1145/358438.349342
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://github.com/CTSRD-CHERI/cheribuild
https://github.com/CTSRD-CHERI/cheribuild
http://llvm.org/pubs/2006-05-24-SAFECode-BoundsCheck.html
http://llvm.org/pubs/2006-05-24-SAFECode-BoundsCheck.html
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/176454.176507
https://doi.org/10.1145/1029873.1029883
https://doi.org/10.1145/3158154
https://github.com/rust-lang/rust/commit/dec73f5
https://github.com/rust-lang/rust/commit/dec73f5
https://doc.rust-lang.org/1.55.0/book/
https://github.com/kbknapp/cargo-count
https://github.com/kbknapp/cargo-count
https://github.com/CTSRD-CHERI/llvm-project
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/3290380
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf


S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:25

24 Miguel Ojeda. [PATCH 00/13] [RFC] Rust support, April 2021. URL: https://lore.kernel.
org/lkml/20210414184604.23473-1-ojeda@kernel.org/.

25 Rust project contributors. [Pre-RFC] usize is not size_t, September 2021. URL: https:
//internals.rust-lang.org/t/pre-rfc-usize-is-not-size-t/15369.

26 Rust project contributors. The Rust Standard Library - Primitive Type usize, 2021. URL:
https://doc.rust-lang.org/1.55.0/std/primitive.usize.html.

27 Rust project developers. Rust 0.1, 2012. URL: https://github.com/rust-lang/rust/
releases/tag/0.1.

28 Rust project developers. The Rust Reference. The Rust Project Developers, 2021. URL:
https://doc.rust-lang.org/1.55.0/reference/.

29 Rust project developers. usize – Rust. The Rust Project Developers, 2021. URL: https:
//doc.rust-lang.org/std/primitive.usize.html.

30 Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer overflow detector. In In
Proceedings of the 11th Annual Network and Distributed System Security Symposium, pages
159–169, 2004.

31 Nicholas Sim. Support index size != pointer width. https://github.com/rust-lang/rust/
issues/65473, October 2019. last accessed: November 28, 2022.

32 Nicholas Sim. Strengthening memory safety in Rust: exploring CHERI capabilities for
a safe language. Master’s thesis, University of Cambridge, August 2020. URL: https:
//nw0.github.io/cheri-rust.pdf.

33 The Chromium Projects. Memory Safety. https://www.chromium.org/Home/
chromium-security/memory-safety/. last accessed: July 25, 2022. URL: https://www.
chromium.org/Home/chromium-security/memory-safety/.

34 The FreeBSD Projet and CTSRD CHERI. CTSRD-CHERI cheribsd, 2022. last accessed:
March 4, 2021. URL: https://github.com/CTSRD-CHERI/cheribsd.

35 Aaron Turon. Rust blog: Abstraction without overhead: Traits in rust, May 2015. URL:
https://blog.rust-lang.org/2015/05/11/traits.html.

36 Robert N. M. Watson, Simon W. Moore, Peter Sewell, and Peter G. Neumann. An Introduc-
tion to CHERI. Technical Report UCAM-CL-TR-941, University of Cambridge, Computer
Laboratory, September 2019. doi:10.48456/tr-941.

37 Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Hesham Almatary,
Jonathan Anderson, John Baldwin, Graeme Barnes, David Chisnall, Jessica Clarke, Brooks
Davis, Lee Eisen, Nathaniel Wesley Filardo, Richard Grisenthwaite, Alexandre Joannou, Ben
Laurie, A. Theodore Markettos, Simon W. Moore, Steven J. Murdoch, Kyndylan Nienhuis,
Robert Norton, Alexander Richardson, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan
Xia. Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture
(Version 8). Technical Report UCAM-CL-TR-951, University of Cambridge, Computer
Laboratory, October 2020. doi:10.48456/tr-951.

38 Aaron Weiss, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed. Oxide: The essence
of Rust. CoRR, 2019. arXiv:1903.00982.

39 Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Sam Ainsworth, Lucian
Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala, Alexander Richard-
son, John Baldwin, David Chisnall, Jessica Clarke, Khilan Gudka, Alexandre Joannou,
A. Theodore Markettos, Alfredo Mazzinghi, Robert M. Norton, Michael Roe, Peter Sewell,
Stacey Son, Timothy M. Jones, Simon W. Moore, Peter G. Neumann, and Robert N. M.
Watson. Cornucopia: Temporal Safety for CHERI Heaps. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 608–625, May 2020. doi:10.1109/SP40000.2020.00098.

40 Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent types.
In Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design
and Implementation, PLDI ’98, pages 249–257, New York, NY, USA, 1998. Association for
Computing Machinery. doi:10.1145/277650.277732.

ECOOP 2023

https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/
https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/
https://internals.rust-lang.org/t/pre-rfc-usize-is-not-size-t/15369
https://internals.rust-lang.org/t/pre-rfc-usize-is-not-size-t/15369
https://doc.rust-lang.org/1.55.0/std/primitive.usize.html
https://github.com/rust-lang/rust/releases/tag/0.1
https://github.com/rust-lang/rust/releases/tag/0.1
https://doc.rust-lang.org/1.55.0/reference/
https://doc.rust-lang.org/std/primitive.usize.html
https://doc.rust-lang.org/std/primitive.usize.html
https://github.com/rust-lang/rust/issues/65473
https://github.com/rust-lang/rust/issues/65473
https://nw0.github.io/cheri-rust.pdf
https://nw0.github.io/cheri-rust.pdf
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://github.com/CTSRD-CHERI/cheribsd
https://blog.rust-lang.org/2015/05/11/traits.html
https://doi.org/10.48456/tr-941
https://doi.org/10.48456/tr-951
https://arxiv.org/abs/1903.00982
https://doi.org/10.1109/SP40000.2020.00098
https://doi.org/10.1145/277650.277732


39:26 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

41 Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Filardo, Michael Roe,
Alexander Richardson, Peter Rugg, Peter G. Neumann, Simon W. Moore, Robert N. M.
Watson, and Timothy M. Jones. Cherivoke: Characterising pointer revocation using cheri
capabilities for temporal memory safety. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO ’52, pages 545–557, New York, NY,
USA, 2019. Association for Computing Machinery. doi:10.1145/3352460.3358288.

42 Yuchen Zhang, Yunhang Zhang, Georgios Portokalidis, and Jun Xu. Towards understanding the
runtime performance of rust. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’22, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3551349.3559494.

https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1145/3551349.3559494


S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:27

A Test suite

Benchmark Version Description SLOC Unsafe

arrayvec 0.7.2 A vector with fixed capacity, backed by an
array.

2,059 26

block-ciphers/aes 0.7.2 Pure Rust implementation of the Advanced
Encryption Standard.

4,218 25

fixedbitset 0.3.1 A simple bitset collection. 1,431 4

hashbrown† 0.11.2 Google’s SwissTable hash map. 8,454 182

hashes/sha2 0.10.2 Pure Rust implementation of the SHA-2
hash function family.

1,086 2

hashes/sha3 0.10.1 SHA-3 (Keccak) hash function 320 0

indexmap† 1.0.0 A hash table with consistent order and fast
iteration.

6,092 3

itoa 1.0.3 Fast integer primitive to string conversion. 324 5

lebe 0.5.0 Tiny, dead simple, high performance endi-
anness conversions with a generic API.

527 40

matrixmultiply 0.3.2 General matrix multiplication for f32 and
f64 matrices.

3,898 22

ndarray 0.15.6 An n-dimensional array for general ele-
ments and for numerics.

25,508 340

num-bigint 0.4.3 Big integer implementation for Rust. 12,541 0

petgraph† 0.6.0 Graph data structure library. 19,559 5

priority-queue† 1.3.1 A Priority Queue implemented as a heap
with a function to efficiently change the
priority of an item.

3472 68

rust-decimal 1.23.1 Decimal number implementation written in
pure Rust suitable for financial and fixed-
precision calculations.

11,469 0

ryu 1.0.12 Fast floating point to string conversion. 2,930 317

smawk 0.2.0 Functions for finding row-minima in a
totally monotone matrix.

740 0

strsim 0.10.0 Implementations of string similarity met-
rics.

837 0

uuid-rs 1.3.0 A library to generate and parse UUIDs. 3,505 2

Total 108,970 1,041

Tests marked with †required patches to their Config.toml to pin compatible versions of
dependencies.

ECOOP 2023


	1 Introduction
	2 Background
	2.1 Rust
	2.1.1 Move and Drop
	2.1.2 References and lifetimes
	2.1.3 unsafe

	2.2 The Rust Compiler
	2.3 Capability hardware
	2.3.1 Morello prototype


	3 Adjustments to the Rust compiler and standard library
	3.1 Rust semantics open question: usize
	3.2 Target specification
	3.3 Constant evaluation
	3.4 Pointer code generation
	3.5 Tweaks to LLVM
	3.6 MPSC
	3.7 FFI types

	4 Performance analysis methodology
	4.1 Test hardware
	4.2 Operating system
	4.3 Disabling bounds checking
	4.4 cargo bench
	4.5 Line counts
	4.6 Test suites

	5 Results
	5.1 The cost of software bounds checking
	5.2 The cost of hardware bounds checking
	5.3 Benchmarks
	5.4 Validity of results
	5.4.1 Prototype hardware
	5.4.2 Choice of benchmark suite


	6 Related Work
	6.1 Rust and type-safe systems programming
	6.2 Prior work porting Rust to CHERI
	6.3 Bounds checking

	7 Future work
	8 Conclusions
	A Test suite

